Lucas Pastor
Laboratoire G-SCOP, bureau B521
46 avenue Félix Viallet
38031 Grenoble Cedex 1
France
Telephone: +33 (0) 4 56 52 98 22
Mail: lucas.pastor@g-scop.grenoble-inp.fr
I'm a third year PhD student in the Combinatorial Optimization team of G-SCOP. My advisors are Frédéric Maffray (G-SCOP) and Sylvain Gravier (Institut Fourier).
I'm working on graph theory. I am interested in about everything in this field even though my main works are about graph coloring and structural graph theory.
We give a polynomial time algorithm that finds the maximum weight stable set in a graph that does not contain an induced path on seven vertices or a bull (the graph with vertices $a$, $b$, $c$, $d$, $e$ and edges $ab$, $bc$, $cd$, $be$, $ce$).
Is there some absolute $\varepsilon > 0$ such that for any claw-free graph $G$, the chromatic number of the square of $G$ satisfies $\chi(G^2) \le (2-\varepsilon) \omega(G)^2$, where $\omega(G)$ is the clique number of $G$? Erdős and Nešetřil asked this question for the specific case of $G$ the line graph of a simple graph and this was answered in the affirmative by Molloy and Reed. We show that the answer to the more general question is also yes, and moreover that it essentially reduces to the original question of Erdős and Nešetřil.
A graph $G$ is called normal if there exist two coverings, $\mathbb{C}$ and $\mathbb{S}$ of its vertex set such that every member of $\mathbb{C}$ induces a clique in $G$, every member of $\mathbb{S}$ induces an independent set in $G$ and $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$. It has been conjectured by De Simone and Körner in 1999 that a graph $G$ is normal if $G$ does not contain $C_5$, $C_7$ and $\overline{C_7}$ as an induced subgraph. We disprove this conjecture.
We present a polynomial-time algorithm that finds a maximum weight stable set in a graph that does not contain as an induced subgraph an induced path on six vertices or a bull (the graph with vertices $a, b, c, d, e$ and edges $ab, bc, cd, be, ce$).
It has been conjectured that for every claw-free graph $G$ the choice number of $G$ is equal to its chromatic number. We focus on the special case of this conjecture where $G$ is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most $4$.
We present a polynomial-time algorithm that determines whether a graph that contains no induced path on six vertices and no bull (the graph with vertices $a,b,c,d,e$ and edges $ab,bc,cd,be,ce$) is $4$-colorable. We also show that for any fixed $k$ the $k$-coloring problem can be solved in polynomial time in the class of $(P_6,\mbox{bull},\mbox{gem})$-free graphs.
Présentation AGIR, UFR IM2AG (Grenoble, France) November 24 2016. Coloration dans les graphes structurés. Slides.
Présentation JGA, Université Paris-Dauphine (Paris, France) November 16 2016. Indépendant de poids maximum dans les ($P_6$, bull)-free. Slides.
Séminaire LIMOS, (Clermont-Ferrand, France) October 12 2016. Disproving the normal graph conjecture. Slides.
Séminaire LaBRI, équipe Graphes et Optimisation (Bordeaux, France) March 4 2016. The coloring problem in graphs with structural restrictions. Slides.
Séminaire G-SCOP (Grenoble, France) October 1st 2015. Coloration par liste dans les graphes parfaits sans griffe. Slides.
Présentation JGA, (Orléans, France) November 4 2015. Coloration par liste dans les graphes parfaits sans griffe. Slides.
Third STINT meeting (Autrans, France) June 30 2015. List-coloring in claw-free perfect graphs. Slides.
Présentation Journées G-SCOP, (Loriol, France) June 4 2015. Coloration par liste. Slides.
2016-2017 Modélisation des structures informatiques (Modelisation of computer science structures), L2, TD/TP, Université Joseph Fourier, Grenoble.
2016-2017 Base de données et Bases de Connaissances, L3, TD/TP, UFR Informatique, Mathématiques, Mathématiques Appliquées, Grenoble.
2015-2016 Introduction à UNIX et à la programmation en langage C (introduction to UNIX and C programming), L1, TD/TP, Université Joseph Fourier, Grenoble.