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Abstract

Itis a long standing open problem to find an explicit desaipbf the stable set polytope ofaw-
free graphs Yet more than 20 years after the discovery of a polynomgd@thm for the maximum
stable set problem for claw-free graphs, there is even njecture at hand today.

Such a conjecture exists for the clasgjaasi-line graphsThis class of graphs is a proper superclass
of line graphs and a proper subclass of claw-free graphsHarhwit is known that not all facets have
0/1 normal vectors. ThBen Rebea conjectustates that the stable set polytope of a quasi-line graph
is completely described bglique-familyinequalities. Chudnovsky and Seymour recently provided
a decomposition result for claw-free graphs and provedttfeBen Rebea conjecture holds, if the
guasi-line graph is not fuzzy circular interval graph

In this paper, we give a proof of the Ben Rebea conjecture bty that it also holds for fuzzy
circular interval graphs. Our result builds upon an aldnitof Bartholdi, Orlin and Ratliff which is
concerned with integer programs defined by circular onesicest

1 Introduction

A graph G is claw-freeif no vertex has three pairwise nonadjacent neighbors. biaghs are claw
free and thus the weighted stable set problem for a clawgraph is a generalization of the weighted
matching problem of a graph. While the general stable sdtl@no is NP-complete, it can be solved in
polynomial time on a claw-free graph [22, 30] even in the Wwigg case [23, 24] see also [33]. These
algorithms are extensions of Edmonds’ [11, 10] matchingrtigms.

The stable set polytop8TARG) is the convex hull of the characteristic vectors of stabls sé
the graphG. The polynomialequivalence of separation and optimizatifor rational polyhedra [17,
27, 19] provides a polynomial time algorithm for the separaproblem forSTARG), if G is claw-
free. However, this algorithm is based on the ellipsoid métf20] and no explicit description of a
set of inequalities is known that determin®5 ABG) in this case. This apparent asymmetry between
the algorithmic and the polyhedral status of the stable s#ilem in claw-free graphs gives rise to the
challenging problem of providing a “.. . decent linear dgs@n of STABG)” [18], which is still open
today. In spite of results characterizing the rank-facksg (facets with §1 normal vectors) of claw-free
graphs, or giving a compact lifted formulation for the salssl of distance claw-free graphs [28], the
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structure of the general facets for claw-free graphs isrgitl well understood and even no conjecture is
at hand.

The matching problem [10] is a well known example of a comtainal optimization problem in
which the optimization problem on the one hand and the famethe other hand are well understood.
This polytope can be described by a system of inequalitiaghioh the coefficients on the left-hand-side
are /1. This property of the matching polytope dowst extend to the polytop&TABG) associated
with a claw-free graph. In fact, Giles and Trotter [15] shdwttfor each positive integex, there exists a
claw-free grapltG such thaSTABG) has facets witla/(a+ 1) normal vectors. Furthermore they show
that there exist facets whose normal vectors have up to 8rdiff coefficients (indeed up to 5 as it is
shown in [21]). Perhaps this is one of the reasons why progidi description o6TABG) is not easy,
since 0’1 normal vectors can be interpreted as subsets of the setlenewhereas such an interpretation
is not immediate if the normal vectors are ngtl0

A graph isquasi-line if the neighborhood of any vertex partitions into two ckgu The complement
of quasi-line graphs are callatkar-bipartite and an interestingpolyhedral characterization of near-
bipartite graphs is given in?]; also a linear description of their stable set polytope basn given
in [34]. The class of quasi-line graphs is a proper supesadsine graphs and a proper subclass of the
class of claw-free graphs. Interestingly also for this€lafsgraphs there are facets wif(a+ 1) normal
vectors, for any nonnegative integefl5], but no facet whose normal vector has more than 2 diftere
coefficients is known for this class.

Clique family inequalities and the Ben Rebea conjecture

We now describe the clique-family inequalities introduaef6]. Our main result is a proof of the Ben
Rebea conjecture, which essentially says that this propeerglization of th@dd-set inequalitie$10]
which describe that matching polytope, together with thenegativity and clique inequalities, describe
the stable set polytope of a quasi-line graph.

Let ¥ = {Ky,...,Kn} be a set of cliques, £ p < nbe integral and =n modp. LetV,_1 CV(G)
be the set of vertices covered by exadtty— 1) cliques off andV-, C V(G) the set of vertices covered
by p or more cliques off . The inequality

(=11 5 X +(p-1) F X< (p-1) L—’;J W

is valid [26] for STARG) and is called thelique family inequalityassociated withr and p.

Clique family inequalities are a generalizationaafd-set inequalitie§l0] which are part of the de-
scription of thematching polytopeThis can be seen as follows. Suppose that the géapltV (G),E(G))
is the line graph of the grapgd = (V(H),E(H)) and letU CV(H) be an odd subset of the nodeg-bf

The odd-set inequality defined hyis the inequality

Y X <[]/ )

ecE(U)

which is valid for all characteristic vectopse {0,1}5(H) of matchings irH. Here,E(U) C E(H) is the
subset of edges ¢ which have both endpoints (.

This inequality is a clique-family inequality for the stakdet polytope o6, via the following con-
struction. Each vertexe U yields a cliqueKy in the line graphG of H consisting of the edgesc E(H),
which are incident to. The family of cliquesr will consist of those cliques. Furthermore we jet 2.
Since|U| is odd the remainder is 1. Furthermore, the vertices Gf which are inV-, are exactly the
edges oH which have both endpoints I C V(H). The clique family inequality corresponding #o



andpis therefore the odd-set inequality

T xv) < ul/2). 3)

veE(U)

Ben Rebea [29] considered the problem to st8@YABG) for quasi-line graphs. Oriolo [26] formu-
lated a conjecture inspired by his work.

Conjecture (Ben Rebea conjecture [26]Y he stable set polytope of a quasi-line grapk=GV, E) may
be described by the following inequalities:

(i) x(v) >0 foreachveV
(i) SvexX(v) <1 for each maximal clique K

(i) inequalities (1) for each family# of maximal cligues and each integer p wjth| > 2p > 4 and
|7| modp#0.

In this paper we prove that Ben Rebea Conjecture holds truds i§ done by establishing the
conjecture forfuzzy circular interval graphsa class introduced by Chudnovsky and Seymour [6]. This
settles the result, since Chudnovsky and Seymour showeédhthaonjecture holds i6 is quasi-line
and not a fuzzy circular interval graph. Interestingly,cgirall the facets are rank for this latter class of
graphs, the quasi-line graphs that “produce” non-rankté&aee the fuzzy circular interval graphs. We
recall that aank inequality is an inequality whose normal vector has onlydéfficients.

We first show that we can focus our attentionaircular interval graphg[6] a subclass of fuzzy cir-
cular interval graphs. The weighted stable set problem a@rcular interval graph may be formulated
as a packing problem m&&x| Ax<b, x € Z1,}, whereb = 1 andA € {0,1}™" is acircular ones ma-
trix, i.e., the columns oA can be permuted in such a way that the ones in each row appesgatgively.
Here the last and first entry of a row are also considered tmbsecutive. Integer programs of this sort
with general right-hand sidie € Z™ have been studied by Bartholdi, Orlin and Ratliff [3]. Frohist
we derive a separation algorithm which is based on the caatipatof a cycle with negative length in
a suitable directed grapb, thereby extending a recent result of Gijswijt [14]. We tleemcentrate on
packing problems with right-hand side= a 1, wherea is an integer. By studying the structure of the
cycles ofD with negative length, we show that each facet of the convébohinteger feasible solutions
to a packing problem of this sort has a normal vector with taesecutive coefficients. Instantiating this
result with the case whee= 1, we obtain our main result.

Cutting planes

Before we proceed, we would like to stress some connectibttssowork to cutting plane theory. An
inequality cx < | 8| is a Gomory-Chatal cutting plane[16, 7] of a polyhedrorP C R", if c € Z" is
an integral vector andx < d is valid for P. The Chvatal closure P of P is the intersection oP with
all its Gomory-Chvatal cutting planes. H is rational, thenP® is a rational polyhedron [31]. The
separation problem fd?® is NP-hard [12]. A polytopd® hasChwatal-rank one, if its Chvatal closure is
the integer hulP of P, i.e. the convex hull of the integer vectorsin Let QSTARG) be thefractional
stable set polytopef a graphG, i.e., the polytope defined by non-negativity and cliquegursities,
that is, respectively—x, < 0 for each vertew €V, andy .« Xy < 1 for each (maximal) cliqud in
G. A famous example of a polytope of Chvatal-rank one is thetfonal matching polytope and thus
QSTARG), whereG is a line graph. Giles and Trotter [15] showed that the Cliv@nk of QSTARG)

is at least two, ifG is claw-free. Chvatal, Cook and Hartman [8] showed that Ghwatal-rank of
QSTARG) grows logarithmically in the number of nodes, even if thé#itg number ofG is two and



thus, even ifG is claw-free. Oriolo [26] has shown th@STABG) has Chvatal rank at least two,&is
a quasi-line graph.

An inequality cx < d is called asplit cut[9] of P if there exists an integer vectarc Z" and an
integerty such thacx < dis valid forPN{x € R" | ix < 1o} and forPN {x € R" | mx > o+ 1}. The
split closure P of P is the intersection oP with all its split cuts and this is a rational polyhedrorPif
itself is rational [9, 2]. The separation problem for theitsgliosure is also NP-hard [4]. A polyhedron
P C R" hassplit-rank one, if P = B. Since a Gomory-Chvatal cutting plane is also a split cé loas
PsC PC.

Both cutting plane calculi are simple procedures to deral@hinequalities for the integer hull of a
polyhedron. We show below that a clique family inequalityisplit cut forQSTARG) with Ti(v) = 1
if veVp_1UVsp, (V) = 0 otherwise andip = L%j. Thus, while the fractional stable set polytope of a
quasi-line graph does not have Chvatal rank one, its splik-is indeed one.

In the remainder of this section, we present the split-cuivdton of the clique-family inequality.
Notice that the inequality

(p—1) g XV)+p Y X(v) <n=p[n/p|+r (4)

VEV>p

is valid for QSTARG), since it is the result of summing up the clique inequalittesresponding tor
and possibly applying the lower bounds(v) < 0 on verticess € V-, which are contained in more than
p cliques. Now consider the disjunction

x(v)<|[n/p] v > X(v)=I[n/p]+1 (5)

vEVp-_1UVsp VEVp-1UV>p

Assume now the left inequality of the disjunction (5). Untlés assumption we can write

(p—r—1) g X(V)+(p—T1) 2 xv) < (p=r) > XV

VEV>p VEVp_1UVsp

< (p—r)[n/pl,

where the first inequality follows from the lower bounds oe tlariables.
Assume now the right inequality of the disjunction (5). Tige with (4) we can write

(p —Ir— 1) ZVGVp,l X(V) + (p_ I‘) ZVEVEpX(V)
=(p-1) VeV, X(v) + P vev., X(v) —r PRVEVARE VAN X(v)
< (p=n)n/p).

2 From quasi-line graphsto circular interval graphs

In this section we first review some results concerning thecgire of quasi-line graphs due to Chud-
novsky and Seymour [6]. We then build upon these resultsdoae the proof of the Ben Rebea conjec-
ture to the case where the graph is a circular interval graph.

2.1 Circular Interval Graphs

A circular interval graph[6] G = (V,E) is defined by the following construction, see Figure 1: Take a
circle ¢ and a set of verticeg on the circle. Take a subset of interval®f ¢ and say that,v eV are
adjacent ifu andv are contained in one of the intervals.

Any interval used in the construction will correspond toigwé of G. Denote the family of cliques
stemming from intervals by, and the set of all cliques i by K(G). Without loss of generality, the
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Figure 1: A circular interval graph

(intervals) cliques ofx; are such that none includes another. MoreayeiC K(G) and each edge @
is contained in a clique ak;. Therefore, if we leA € {0,1}™" be the clique vertex incidence matrix of
%; andV one can formulate the (weighted) stable set problem on alairinterval graph as a packing
problem
max 3 ey C(V)X(V)
Ax < 1
x(v) € {01} WveV

where the matriXA is a circular ones matrix (e.g. using clockwise orderinghef ¥ertices).

We point out that the property above may be used as a charatien for circular interval graphs.
In fact, it is easy to see that a gra@iV,E) is a circular interval graph if and only if there exists an
ordering ofV and a setx; of cliques ofG such that:(i) each edge o6 is contained in a clique ok;;
(i) the clique vertex incidence matrix &, andV is a circular ones matrix. Finally, circular interval
graphs are also callegtoper circular arc graphsi.e. they are equivalent to the intersection graphs of
arcs of a circle with no containment between arcs [6].

2.2 Fuzzy Circular Interval Graphs

Chudnovsky and Seymour [6] also introduceduper-clasf circular interval graphs callefilizzy cir-
cular interval graphs A graphG(V, E) is a fuzzy circular interval if the following conditions fbl

(i) There is a mapb fromV to a circlec.

(i) There is a set of intervals of ¢, none including another, such that no pointois an endpoint of
more than one interval so that:

(a) Iftwo verticesu andv are adjacent, the®(u) and®(v) belong to a common interval.

(b) If two verticesu andv belong to a same interval, which is not an interval with distiend-
points®(u) and®(v), then they are adjacent.

In this case, we also say that the p@lr, 1) gives afuzzy representatioof G.

In other words, in a fuzzy circular interval graph, adjadea@re completely described by the pair
(P, 1), except for verticesi andv such that: contains an interval with endpoin®(u) and®(v). For
these vertices adjacency is fuzzy. [H,q] is an interval ofr such thatd—1(p) and ®~1(q) are both
non-empty, then we call the clique®{*(p), ®1(q)) afuzzy pair Here®1(p) denotes the clique
{veV|®(v) = p}.

The left drawing of Figure 2 illustrates a section of a reprgation of a fuzzy circular interval graph
G. The cliquesd—(p) and®(r) are fuzzy pairs, since andr are the endpoints of an interval. The
node setsb~1(p) U ®1(q) and®~1(q) Uud~L(r) are cliques. The edges with one endpointint(p)
and the other itb—(r) are “fuzzy”. The other interval which starts a little lefofn g and ends as$ can



be extended a little to the right sfsinced®1(q)U®~1(r)ud~1(s) is a clique ofG. Therefore the right
drawing of Figure 2 shows another possible representafitihecsame graph.

Figure 2: Two different representations of a fuzzy circufeerval graph

In the following, when referring to a fuzzy circular intehgraph, we often consider &uzzy repre-
sentation(®, 1) and detail the fuzzy adjacencies only when needed.

Let Q be a subset of andv a vertex not inQ. We say thav is completeo Q if vis adjacent to each
vertex ofQ, while we say thav is anticompleteto Q if v is not adjacent to any vertex &f

Two disjoint cliquesk; andK; of size at least two are Bomogeneouspair of cliques [6] if each
vertexv ¢ K1 UK is: either complete t&1 andKj; or anticomplete t&; andKy; or complete td; (K2)
and anticomplete t& (Ky). Trivially, if [p,q] is an interval of such thatb—(p) and®~1(q) are both
of size at least two, the®(p) and®~1(q) is a homogeneous pair.

We also say that a homogeneous pair of cliqUesKy) is proper if every vertex ofK; is neither
complete nor anticomplete t, and every vertex oK5 is neither complete nor anticompleteKe. A
graph is Cs-freeif it does not have an induced subgraph isomorphic to a cesdigcle of length 4. For
X CV, we denote bys[X] the subgraph o6 induced by X

Lemmal. [5]Let (Ki,K2) be a homogeneous pair of cliques.(Ki,K>) is proper, then the subgraph
G[K1 UKj5] contains an induced £

Proof. For a vertexu € K; let dx(u) be its degree with respect Ky, that isdx(u) = [{ve Kz : uve E}|.
Let u; be a vertex oK; with maximum degree with respect K». Since(Ki,K>) is proper,u; has a
non-neighborz, in K,. The same applies t» andK;: z has a neighbou, € K;. Finally, there must
exist a vertexg; € K that is a neighbor ofi; and a non-neighbor af, (otherwised,(uz) > da(ug)). It
follows that{us,uy,21,2} induce &Cj. O

Lemma 2. Let G be a fuzzy circular interval graph with a fuzzy repraagan (®, 1). If no fuzzy pair
contains an induced £ then G is a circular interval graph.

Proof. Let (®~1(p),®~1(q)) be a fuzzy pair. This pair is homogenous but not proper byrberh. Since
it is not proper, there exists a vertexdn(p) (resp.®~1(q)) that is either complete to anticomplete to
®~(q) (resp.®(p)).

Suppose that € ®~1(p) is complete tod~1(q). Then we can move(v) by a small amount into
the interior of the intervalp,q]. This yields a new representati¢®’, 1) of the graphG that does not
introduce new fuzzy pairs and reduces the number of ventitésh are contained in a fuzzy pair by one.

Similarly, if v e ®~1(p) is anticomplete fron~1(q), we can moveab(v) such that it is outsidgp, g].
This operation yields a new mappidy. In addition to that we must add an intervatoveringv and its
neighbors in[p,q]. Sincev is adjacent to every vertex which is mapped to the half-opérval[p, q)
and sincevU @1 ([p,q)) is a clique, this interval can be chosen such that both of its endpoints are not
contained in® (V). This new representatiof®’, 7 U{l }) does also not introduce new fuzzy pairs - this
is because each of the ends of the new interval is mapped tmke siertex of the graph - and reduces
the number of vertices which are contained in a fuzzy pairnsy. o

We can iterate this process until there are no fuzzy paits lef O



2.3 Decomposition of quasi-line graphs

Let G be a graph ant(G) be its line graph. Notice tha& can be build by considering a disjoint union
of stars (associated to every vertex@Ghand then identifying some of the edgégG) can thus be built
by considering a disjoint union of cliques and identifyingree vertices. This construction has been
generalized by Chudnovsky and Seymour [6] through the dipesaglue andcomposition

Avertexvis simplicial if its neighbors form a clique. Atrip (G,a,b) is a graphG together with two
designated simplicial verticesandb. Let (G,a,b) and(G',a,b’) be two vertex-disjoint strips. Thglue
of (G,a,b) and(G',a,b) is the graph resulting from the union &\ {a,b} andG’\ {&,b'} together
with the adjunction of all possible edges between the neighbfa (b) in G and the neighbors af (b)
in G.

Let Go be a disjoint union of cligues with an even vertex $¥€Gg) = {aj,b1,...,a,,by}. Let
(Gi,a,b) ben strips that are vertex-disjoint, also fro@®. Fori=1,...,n, let G; be the graph ob-
tained by gluing(Gi_1, &, b;) with (G}, a,b). Gy is called thecompositiorof the strips(G{, &, b}), with
the collection of disjoint clique&o.

We observed that a line graph can be built by considering jaidisunion of cliques and identify-
ing some vertices. Gluing a strip that is an induced two-quitd, with a strip(S a,b) results in the
identification ofa andb. Therefore any line grap can be expressed as the composition of strips that
are induced two-edge paths wiiy made of|V (G)| cliques. If we now replace induced two-edge paths
strips by fuzzy linear interval strips (a superclass), weagarge class of quasi-line graphs. Chudnovsky
and Seymour proved in fact the following structural result.

Theorem 3 (Chudnovsky and Seymour [6]A connected quasi-line graph G is either a fuzzy circular
interval graph, or it is the composition of fuzzy linear i@ strips with a collection of disjoint cliques.

Chudnovsky and Seymour were also able to give a completactesization of the stable set poly-
tope of quasi-line graphs that anet fuzzy circular interval graphs. Let = {K1,Kp,...,Kan11} be an
odd set of cliques of5. Let T CV be the set of vertices which are covered by at least two diquiie
# . Then the inequalityy .1 X(v) < nis a valid inequality folSTABG) and inequalities of this type are
called Edmonds inequalities.

Theorem 4 (Chudnovsky and Seymour [6])f G is the compaosition of fuzzy linear interval strips with a
collection of disjoint cliques, then all non trivial facet$ STABG) are Edmonds inequalities.

2.4 Thereduction tocircular interval graphs

Observe that Edmonds inequalities are special clique yamdqualities associated with and p = 2.
Therefore, we may give a positive answer to the Ben RebeaeComg if we prove that it holds for fuzzy
circular interval graphs. We now show that it will be enouglptove the conjecture for circular interval
graphs.

Lemma5. Let F be a facet of STAB), where G is a fuzzy circular interval graph. Then F is also
a facet of STABS'), where Gis a circular interval graph and is obtained from G by remayisome
edges.

Proof. Suppose thaf is induced by the valid inequalitgx < 3, wherea is a vector indexed by (G).
An edgeeis F-critical, if ax< Bis not valid forSTABG\ e). If eis notF-critical, thenF is also a facet
of STARG\e).

Let (d,1) be a fuzzy representation &. For every fuzzy paifKi,K>), we remove all the edges
connecting a vertex i, to a vertex inK, that are norf--critical. We end up with a fuzzy circular
interval graphG’ which has the same fuzzy representatidnl) asG.



We claim that no fuzzy pair d&’ contains &, and thus by Lemma %' is a circular interval graph.
Moreover since we remove only nétcritical edgesF is still a facet ofSTARG').

Suppose the contrary that there exists a fuzzy @&irK,) of G’ that contains &,. SayV(Cs) =
{ug, Uz, v1,Vo} with ug, up € Ky, v, Vo € Ko, ugva, Upvs € E(Cy4). The edgeu;v; is F-critical. Hence there
exists a se§ containingu; andv; such thatSviolatesax < 3 andSis stable inG’\ uyv;. SinceK; and
Kz form an homogeneous pair andu, are adjacent to the same verticesah\ K. This implies that
(S\u1) U{uy} is a stable set and therefore satisfies the inequality. Tavera(u,) < a(u;) (else(ug,vi)
is notF-critical). Applying the same argument v, leads toa(u;) < a(uz). Which is a contradiction.

O

Remark. We would like to point out here that the following statemeant lse proved in a similar way as
the proof of Lemma 5: Let F be a facet of STUSBwhere G is a general graph. There exists @tained
from G by removing some edges, such that F is also a facet oB&¥Aand G does not contain any
pair of cliques which is proper and homogeneous.

Lemma 5 shows that each facet of a fuzzy circular intervaplyiia a facet of a circular interval graph
which is obtained via the deletion of some edges. A cliqudljaimequality of the thereby obtained cir-
cular interval graph is a clique family inequality of theginal fuzzy circular interval graph. Therefore,
we now only have to establish the Ben Rebea conjecture farl#iss of circular interval graphs. Recall
that the stable set polytope of a circular interval graphésinteger hull of a polyhedron of the form
{xeR"| Ax< 1,x> 0}, whereA € {0,1}™" is a circular ones matrix.

3 Slicing and separation

In this section we show that the separation problemS33ARG) reduces to a min-cost circulation
problem if G is a circular interval graph. For this, we present a memlygmsigorithm of Gijswijt [14]
and develop it further to retrieve a separating hyperplane.

Let P be a polytope® = {x € R" | Ax< b, x > 0}, whereA € {0,1}™" is a circular ones matrix and
b € Z™ an integral vector. We consider the separation problemhiirtteger hulP, of P:

Givenx* € R", determine, whethet* € P, and if not, determine an inequalityx < & which
is valid for B, and satisfieg x* > d.

Following Bartholdi, Orlin and Ratliff [3], we consider thaimodular transformatior = T y, whereT
is the unimodular matrix L
“11
“11

T= - 6)
1
-11

The problem then reads, separgte= T~1x* from the integer hullQ, of the polytopeQ defined by the

system
(_A,)Tys (g) @)

In the following we denote the inequality system (7)By< d. Let us rewrite the matriB asB = (N|v),

i.e. vis then-th column ofB. Observe that, by constructionjs also the last column )
Each row of the matriN has at most one entry which4sl and at most one entry whichisl. All

other entries are 0. The matrixX is thus totally unimodular. Thus, whenewgn) is set to an integer



B € Z, the possible values for the variablgd),...,y(n— 1) define an integral polytop@z = QN {y €
R" | y(n) = B}. We call this polytopeQg the slice of Q defined byf.

SinceT is unimodular, the corresponding slice of the original pelgronPN {x e R" | 3L, x(i) = B}
is an integral polyhedron. From this it is already easy totkatthe split-rank oP is one. However, we
present a combinatorial separation procedure for theentegll P, of P which computes a split cut via
the computation of a negative cycle.

If y*(n) is integral, thery lies inQy if and only ify* € Qy.(n). Therefore we assume in the following
thaty*(n) is not integral and lef be an integer such th@t< y*(n) < 3+ 1 and let 1> p > 0 be the
real number witly*(n) = B+ 1— . Furthermore, leQ_ andQgr be the left sliceQg and right sliceQg 1
respectively. A proof of the next lemma follows from basicwexity.

Lemma6. The point ¥ lies in Q if and only if there existyye Q. and y& € Qg such that

Y =M%+ (1 - WyR.

In the following we denote by € R"* the vector of the firsh— 1 components of € R". From the
above discussion one hgse Q, if and only if the following linear constraints have a fedsibolution.

V+¥R = Y
NYL < pd , (8)
Nyg < (1-pdr

whered, =d—Bvanddgr=d— (B+ 1)v.
Using Farkas’ Lemma [32], it follows that the system (8) iadible, if and only ifs " A(i)y* (i) +
ufod. + (1— p) frdr is nonnegative, whenevar f| and fr satisfy

A+fIN = 0
A+feN = 0 )
f.,fir > 0.

Now A + f N =0 andA + frRN = 0 is equivalent t& = — fy N and f_N = fgrN. Thus (8) defines a feasible
system, if and only if the optimum value of the following lareprogram is nonnegative

min— fLNW-l- qudL + (1— Ll) frOr
ftlN = fgrN (10)
fL,fir > 0.

Let w be the negative sum of the columnsif Then (10) is the problem of finding a minimum cost
circulation in the directed grapgh = (U, A) defined by the edge-node incidence matrix

M= <_NN V&) and edge weightg(—Ny* +d. ), (1— W) (-=Ny* +dRr) (11)

Thusy* ¢ Q, if and only if there exists a negative cyclen= (U, A). The membership problem f@,
thus reduces to the problem of detecting a negative cydle see [14].

A separating split cut foy* is an inequality which is valid foQ, andQg but not valid fory*. The
inequality fy Ny < f, d__ is valid for Q. and the inequalityfrNy < frdr is valid for Qr. The corresponding
disjunctive inequality (see, e.qg., [25]) is the inequality

fLNy—I— c(n)y(n) < 6, Wherec(n) = f|_d|_ — fRdR ando = (B + l) f|_d|_ — BfRdR- (12)



The polytope$), andQr are defined by the systems

yn = B y(n = B+1
Ny+vyin) < d and Ny-+vyn) < d (13)

respectively.

Let f_ o be the numbec(n) — fv. Then the inequality (12) can be derived from the system ihefin
QL with the weights(f o, f.), i.e., the inequality can be obtained &% - y(n) + fL - (Ny+vy(n)) <
fLo-B+ fLd. Notice that, ify* can be separated fro@, then f_ o must be positive. This is becauge
violates (12) and satisfies the constraints (13) on thewdfere the equality(n) = B in the first line is
replaced withy(n) > B. Let fr o be the numbec(n) — frv. Then the inequality (12) can be derived from
the system definin@r with the weights( fr o, fr). Notice that, ify* can be separated fro@, thenfrg
must be negative.

A negative cycle in a graph witm edges anadh nodes can be found in tim@(mn), see, e.g. [1].
Translated back to the original space and to the polyheBrihis gives the following theorem.

Theorem 7. The separation problem for lBan be solved in time @ n). Moreover, if X € Pand X ¢ B
one can compute in @ n) a split cut cx< d which is valid for P and separates™from R together with

a negative integer o, a positive integer (fo and a vector f, fr, which is the incidence vector of a
simple negative cycle of the directed graph-3U,.A) with edge-node incidence matrix and weights as
in (11), such that cx< d is derived with from the systems

Ix < B -Ix < —(B+1)
Ax < b and Ax < b (14)
-x < 0 -x < 0,

with the weights (fo, f and|fro|, fr respectively.

The above theorem gives an explicit derivation of the sepaydyperplane as a split cut & We
have the following corollary.

Coroallary 8. The integer hull Pis the split closure of P.

4 Thefacetsof P, for thecaseb=a-1

In this section we study the facetsRf whereP = {x € R" | Ax< b, x > 0}, whereAis a circular ones
matrix andb is an integer vector of the form1, a € N. For this, we actually inspect how the facets
of the transformed polytop® described in Section 3 are derived from the systems (13) pply #his
derivation to the original system. It will turn out that theecét normal-vectors ¢ have only two integer
coefficients, which are in addition consecutive. Since thbls set polytope of a circular interval graph
is defined by such a system with= 1, we can later instantiate the results of this section ®ghecial
case. We can assume that the rowg\@fre inclusion-wise maximal, that is, for each rgwhere does
not exists another roy # i such thatj, > aj, for eachh = 1..n.

Let F be a facet ofQ, and lety* be in the relative interior oF. This facetF is generated by the
unique inequality (12), which corresponds to a simple cggl€10) of weight 0. Furthermore assume
thatF is not induced by an inequality(n) < ywith y € Z. SinceF is a facet of the convex hull of integer
points of two consecutive slices, we can assumeythal) = 3+ 1/2 and thus that=1/2 in (10). This
allows us to rewrite the objective function of problem (18)fallows:

min(s* + 3v) fL + (s — 3v) fr (15)
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wheres® is the slack vector

§ = <°‘Ol> _By = <°‘Ol> - ( _A|> x* > 0. (16)

The pointx* in (16) isx* = T y*. Notice thatx* satisfies the systeix < a 1.

Furthermore, we are interested in the facet®pfvhich are not represented by the systBm< d.
If F is such a facet, then one can translgtaway fromQ;, without changing/*(n) = B+ 1/2, such that
y* ¢ Q andBy" < d with the property that the facet we are considering is theumiinequality (12),
wheref , fr is a simple negative cycle in the graph= (U, A).

NN

Figure 3: The incidence vector of a rowAfconsists of the nod¢gi+1,...,i + p} which are consecu-
tive on the cycle in clockwise order. Its corresponding arg,iis the arc(i+ p,i — 1). The arc(l — 1,1)
in T corresponds to the lower boumd ) > 0.

In the following we denot&) = {1,...,n}, where node corresponds to thieth column of the matrix
M in (11). Notice thatA partitions in two classes of argg. andAr. The arcsAr are simply the reverse
of the arcsA,. AL consists of two sets of arg and T, where§, is the set of arcs associated with
inequalitiesAx < a1 and T, are the arcs stemming from the lower boumds 0. LikewiseAr can be
partitioned intoSg andTr. In other words, if we look at the arc-node incidence maifixn (11), the
rows ofM appear in the orded , T, Sr, Tr.

In particular, leta denote a row vector of. SinceA is a circular ones matrix one hax < a =
zﬁzox(i +h) < a for some suitablé and p, where computation is modulg sox, = Xg, X,+1 = X1, €tc.

It is straightforward to see thax < a generates the ar¢s+ p,i —1) € S, and (i —1,i + p) € Sg of
A, see Figure 3. The weights of the two arcs coincide,df{i,i+1,...,i 4+ p} and is exactly the slack
o — b _ox*(i+h)in this case. Otherwise, the weight of the &ére- p,i — 1) isa — SE_ox*(i+h) +1/2
and the weight of the arG — 1,i + p) isa — 3f_ox*(i +h) — 1/2.

On the other hand, a lower bourd < 0 generates the two ar¢s— 1,i) € T and(i,i — 1) € Tg.
The weight of both arcs is equal x6(i), if i # n. If i = n, the arc(n— 1,n) € T has weighi*(n) —1/2
and(n,n— 1) € Tr has weighix*(n) +1/2.

Since the slacks are non-negative, the arcs whose costas teqine corresponding slack minés
are the only candidates to have a negative cost. We call tlytgearcs. Consequently we call those arcs
whose cost is equal to the slack pl%meavy Observe that the light arcs belongSgu {(n—1,n)}.

Lemma9. LetC be a simple negative cycle in D, then the following holds:
(a) C contains strictly more light arcs than heavy ones.

(b) Anarc ofC in 8 (T.) cannot be immediately followed or preceded by an ai8{{TR).

11



(c) The cycleC contains at least one arc &k or contains no arc o6 U Sg.

Proof. (a) follows from the fact that the slacks are nonnegativifdliows from our assumption that the
rows of the matrixA are maximal and that is simple.

To prove (c) suppose that the contrary holds. It follows tiat 1,n) is in C, because it is the only
light arc not inSg. We must reacim— 1 on the cycle without using heavy arcs.

Each arc irS_ with starting noden is heavy. Thugn— 1,n) is followed by(n,1) € T, . Suppose that
(n—1,n) is followed by a sequence of arcsTi leading toi and let(i, j) ¢ T be the arc which follows
this sequence. It follows from (b) thét, j) ¢ Tr and thus thati, j) € S_. Since(i, j) cannot be heavy,
we have 1< j <i < n. This is a contradiction to the fact thétis simple, since we have a sub-cycle
contained in, defined by(i, j) and(j, j+1),...,(i—1,i). O

Lemma 10. If there exists a simple cycl@of D with negative cost, then there exists a simple c@tlef
D with negative cost that does not contain any arc fi§m

Proof. Suppose that contains an arc from the s&t. We know from Lemma 9 that the cydtecontains
at least one arc dfg. Lemma 9 implies tha€ has an arc irs., followed by arcs inJ, or T but not
both, followed by an arc i8g. We first consider the case that the intermediate arcs aire &ll

Figure 4: (a) depicts an af&,i — 1) € S, followed by arcs irl. and the ar¢j — 1,1) € Sg. (b) depicts
the situation, where the intermediate arcs argdn

This situation is depicted in Figure 4, (a). The arcSjnis (k,i — 1). This is followed by the arcs
(i—=1,i),...,(j—2,j—1)in IJ_and the ardj — 1,1) in Sg. Let this be the pattP;. We now show that
we can replace this path with the p&th= (k,k+1),...,(I —1,1) consisting of arcs iff_. We proceed
as follows. First we show that the weight of this path is at ntles weight of the original path, where we
ignore the addition of-1/2 to the arc-weights. Let ligk?) and heavyP) be the number of light and
heavy edges in a pafh respectively. We then show that ligh%) — heavyP,) = light(P1) —heavy(P;),
from which we can conclude the claim in this case.

Consider the set of indices = {i,..., ] — 1}, 8 ={],...,k} andc = {k+1,...,1} and the numbers
A=3caX (M), B=Yues X () andC = 3, X"(4) . Ignoring the eventual addition af1/2 to the
edge weights, we have that the weightJafis C and that ofP; is a — (A+B) +A+a — (B+C) and
suppose that this is less th@&n ThenB+ C > a which is not possible, since satisfies the constraints
Ax< al. Thus, if none of the edges Py andP- is heavy or light, the weight dP, is at most the weight
of P;.

Suppose now that € 2. Then®; contains exactly one heavy edf@lei — 1) and one light edge
(n—1,n). The pathP, contains no heavy or light edge. Suppose thats, thenP; contains exactly one
heavy edge(k,i — 1) and one light edgéj — 1,1). P, does not contain a heavy or light edgenl€ ¢,
then®; contains exactly one light edd¢ — 1,1) and no heavy edgeP, also contains exactly one light
edge(n—1,n). This concludes the claim for the case that an ar§ af followed by arcs off; and an
arc of Sg.

The case, where the intermediate arcs beloritktis depicted in Figure 4, (b). The assertion follows
by a similar argument. O
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Combining Theorem 7 with the above lemma we obtain the fatigviheorem.

Theorem 11. Let P= {x € R" | Ax< al,x > 0} be a polyhedron, where A {0,1}"™" is a circular
ones matrix andr € N a positive integer. A facet of i of the form

a Zx(v) +(a-1) Z X(v) < ap, a7

véT
where TC {1,...,n} and a3 € N.

Proof. Theorem 7 implies that a facet which is not inducedd»< a 1, x > 0 or1x < yis a nonnegative
integer combination of the system on the left in (14) withmegative weightd, o, f_.. Lemma 10 implies
that f_ can be chosen such that the only nonzefrd)(entries off,_ are corresponding to lower bounds
—X(v) < 0. The theorem thus follows with = fp| andT set to those variables, whose lower bound
inequality does not appear in the derivation. O

5 Thesolution of the Ben Rebea Conjecture

Let G be a circular interval graph and lgt; the family of cliques stemming from the intervals in the
definition of G (see Section 2). Thed= {x€ R"| Ax< 1,x > 0} where the (1 matrixA, corresponding
to the cliquesk;, has the circular ones property. Theorem 11 implies thaftaest of STARG) is of the
form
a Zx(v) +(a—1) g X(v) <a-B (18)
ve VET

whereT C {1,...,n} anda, € N.

We now show that a facét, which is not induced by an inequality & < 1,x > 0 is induced by
a clique family inequality associated with some set of @ C %; and some integep. Recall from
Theorem 7 that any facet of this kind can be derived from tistesy

-Ix < —(B+1)
Ax 1 (19)
—X 0,

IAIA

with weights|fro|, fr, Wherefrg is a negative integer whilés is a 0-1 vector. Aoot of F is a stable
set, whose characteristic vector belong$tdn particular, we have that the multipliég(v) associated
with a lower bound-x(v) < 0 must be 0 ifv belongs to a root of siz@+ 1. If vdoes not belong to a root
of sizef or to a root of siz8 + 1, then the facet is induced byv) > 0. Thus ifv ¢ T, thenv belongs to
aroot of size3 + 1.

Let 7 = {K € x; | fr(K) # 0} andp = a+|frpo|. The multiplier| fro| must satisfy

—|fro|+|{K e 7 |veK} = a—1 W¢gT

—|frol+{K € ¥ |veK}| = a YWeT, visinaroot of sizf + 1
—|fro| +{K e F |[veK}|> a Vv e T, visnotin aroot of sizg8+ 1
—[frol(B+1)+[7[= aB

Observe thaty | = (a+|fro|)B+ | fro| and therefore = |# | modp=|fro|. Moreover, any vertex not
in T belongs to exactly — 1 cliques from# , while each vertex ifT belongs to at leagp cliques from
¥ . Therefore, inequality (18) is the clique family inequalitssociated witlr andp. In particular since
a>1and|fro| > 1, it follows thatp > 2. We may therefore state the following theorem.

Theorem 12. Let G be a circular interval graph. Then any facet of ST&B which is not induced by
an inequality of the system Ax1, x > 0, is a clique family inequality associated with sormeand p
such that# | modp # 0.
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If we combine this result with Lemma 5, Theorem 4 and we rdball Edmonds inequalities are also
clique family inequalities associated with | odd andp = 2, we obtain the following.

Theorem 13. Let G be a quasi-line graph. Any non-trivial facet of ST/&Bis a clique family inequality
associated with somg and p such that¥ | modp # 0.

The Ben Rebea conjecture is now almost settled. Inspedtamggin, we observe that apart from the
statement that the stable set polytope is described by gativigy, clique and clique family inequalities
it contains also conditions gn andp. We may assume that the cliques in the farilare maximal [26].
What remains is the conditior | > 2p > 4. This is settled in the following, where we also show that
clique family inequality are facet inducing only\it., # 0.

Lemma 14. A clique family inequality associated with and p is facet inducing only if\{ # 0.
Proof. If V>, = 0, then the clique family inequality associated withand p reads:

(p=r=1) ¥ X< (-1 H (20)
VEVp-1 p

NB: r # 0 since otherwise, the inequality reags— 1) Svevy s X(v) < nand is dominated by the sum
of the clique inequalities irF , a contradiction.

The vertices o¥,_; are covered by p-1 cliques gf. Thus the inequalit§y, , X(v) < Lﬁj is valid
for STARG). We will prove that this inequality dominates (20). It isAal if p—r — 1= 0. Otherwise,
we simply have to prove thatf; | < pf;il [5]- Thisistrue ifand only i{p—r —1)| 5% ] < (p—r)[ 7]
Le. ifand only ifn—r' —r| 5% | <n—r—r|3] wherer’=n mod(p—1). Now clearly| ;%5 | > [ 7].
If Lﬁj = L%J, it is clear thatr’ > r since L%j # 0 and the result follows. I[ﬁj > L%J +1, the
result holds ift” > 0 orr’ =0 and| %] > |§]+ 1. If ' =0 and| ;% | = [ ] +1, inequality (20) and
va,lx(V) < Lﬁj coincide but sinceé’ = 0, the later inequality is again dominated by the sum of the
clique inequalities inF , a contradiction.

O
Lemma15. Let G be a quasi-line graph andr , p) a pair such that

(P=r=1) 5 X +(p=r) F X< (p-1) [@J (21)

is a facet of STARS). If |7 | < 2p, then the inequality21) is a clique inequality.

Proof. We know from the previous lemma thét , # 0. Since Vip'J =1,ifVyp_1=0o0rp—r =1, then

the inequality (21) is a clique inequality, and we are dorigeréfore we may assume th4t 1 # 0 and
p—r > 1. Since the inequality is facet inducing, ther-r = 2 and it reads:

g X(v)+2 X(v) <2 (22)
VEVp-1 VEV>p

Trivially, the inequality is also facet-inducing for thedinced subgrapls’ = G[Vp_1 UV-=p). A full
description of the stable set polytope of graphs with stghilumber less than three, &, is given in
[21]. There it is shown that an inequalifcaX(V) + 25 g X(v) < 2, with A andB both non-empty, is
facet inducing only ifB is a clique,A andB are complete and there is an odd antihol&iA|. But no
vertex of a quasi-line graph is complete to an odd antihata{fthe definition of quasi-line graphs), so
there is a contradiction.

O

We may therefore state our main result;
Theorem 16. Ben Rebea’s conjecture is true.
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