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Abstract

It is a long standing open problem to find an explicit description of the stable set polytope ofclaw-
free graphs. Yet more than 20 years after the discovery of a polynomial algorithm for the maximum
stable set problem for claw-free graphs, there is even no conjecture at hand today.
Such a conjecture exists for the class ofquasi-line graphs. This class of graphs is a proper superclass
of line graphs and a proper subclass of claw-free graphs for which it is known that not all facets have
0/1 normal vectors. TheBen Rebea conjecturestates that the stable set polytope of a quasi-line graph
is completely described byclique-familyinequalities. Chudnovsky and Seymour recently provided
a decomposition result for claw-free graphs and proved thatthe Ben Rebea conjecture holds, if the
quasi-line graph is not afuzzy circular interval graph.
In this paper, we give a proof of the Ben Rebea conjecture by showing that it also holds for fuzzy
circular interval graphs. Our result builds upon an algorithm of Bartholdi, Orlin and Ratliff which is
concerned with integer programs defined by circular ones matrices.

1 Introduction

A graph G is claw-free if no vertex has three pairwise nonadjacent neighbors. Linegraphs are claw
free and thus the weighted stable set problem for a claw-freegraph is a generalization of the weighted
matching problem of a graph. While the general stable set problem is NP-complete, it can be solved in
polynomial time on a claw-free graph [22, 30] even in the weighted case [23, 24] see also [33]. These
algorithms are extensions of Edmonds’ [11, 10] matching algorithms.

The stable set polytopeSTAB(G) is the convex hull of the characteristic vectors of stable sets of
the graphG. The polynomialequivalence of separation and optimizationfor rational polyhedra [17,
27, 19] provides a polynomial time algorithm for the separation problem forSTAB(G), if G is claw-
free. However, this algorithm is based on the ellipsoid method [20] and no explicit description of a
set of inequalities is known that determinesSTAB(G) in this case. This apparent asymmetry between
the algorithmic and the polyhedral status of the stable set problem in claw-free graphs gives rise to the
challenging problem of providing a “. . . decent linear description of STAB(G)” [18], which is still open
today. In spite of results characterizing the rank-facets [13] (facets with 0/1 normal vectors) of claw-free
graphs, or giving a compact lifted formulation for the subclass of distance claw-free graphs [28], the
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structure of the general facets for claw-free graphs is still not well understood and even no conjecture is
at hand.

The matching problem [10] is a well known example of a combinatorial optimization problem in
which the optimization problem on the one hand and the facetson the other hand are well understood.
This polytope can be described by a system of inequalities inwhich the coefficients on the left-hand-side
are 0/1. This property of the matching polytope doesnot extend to the polytopeSTAB(G) associated
with a claw-free graph. In fact, Giles and Trotter [15] show that for each positive integera, there exists a
claw-free graphG such thatSTAB(G) has facets witha/(a+1) normal vectors. Furthermore they show
that there exist facets whose normal vectors have up to 3 different coefficients (indeed up to 5 as it is
shown in [21]). Perhaps this is one of the reasons why providing a description ofSTAB(G) is not easy,
since 0/1 normal vectors can be interpreted as subsets of the set of nodes, whereas such an interpretation
is not immediate if the normal vectors are not 0/1.

A graph isquasi-line, if the neighborhood of any vertex partitions into two cliques. The complement
of quasi-line graphs are callednear-bipartite and an interestingpolyhedral characterization of near-
bipartite graphs is given in [?]; also a linear description of their stable set polytope hasbeen given
in [34]. The class of quasi-line graphs is a proper superclass of line graphs and a proper subclass of the
class of claw-free graphs. Interestingly also for this class of graphs there are facets witha/(a+1) normal
vectors, for any nonnegative integera [15], but no facet whose normal vector has more than 2 different
coefficients is known for this class.

Clique family inequalities and the Ben Rebea conjecture

We now describe the clique-family inequalities introducedin [26]. Our main result is a proof of the Ben
Rebea conjecture, which essentially says that this proper generalization of theodd-set inequalities[10]
which describe that matching polytope, together with the nonnegativity and clique inequalities, describe
the stable set polytope of a quasi-line graph.

Let F = {K1, . . . ,Kn} be a set of cliques, 1≤ p≤ n be integral andr = n modp. LetVp−1 ⊆V(G)
be the set of vertices covered by exactly(p−1) cliques ofF andV≥p ⊆V(G) the set of vertices covered
by p or more cliques ofF . The inequality

(p− r −1) ∑
v∈Vp−1

x(v)+ (p− r) ∑
v∈V≥p

x(v) ≤ (p− r)

⌊

n
p

⌋

(1)

is valid [26] for STAB(G) and is called theclique family inequalityassociated withF andp.
Clique family inequalities are a generalization ofodd-set inequalities[10] which are part of the de-

scription of thematching polytope. This can be seen as follows. Suppose that the graphG= (V(G),E(G))
is the line graph of the graphH = (V(H),E(H)) and letU ⊆V(H) be an odd subset of the nodes ofH.

The odd-set inequality defined byU is the inequality

∑
e∈E(U)

x(e) ≤ ⌊|U |/2⌋ (2)

which is valid for all characteristic vectorsχ ∈ {0,1}E(H) of matchings inH. Here,E(U)⊆ E(H) is the
subset of edges ofH which have both endpoints inU .

This inequality is a clique-family inequality for the stable-set polytope ofG, via the following con-
struction. Each vertexv∈U yields a cliqueKv in the line graphG of H consisting of the edgese∈ E(H),
which are incident tov. The family of cliquesF will consist of those cliques. Furthermore we letp = 2.
Since|U | is odd the remainderr is 1. Furthermore, the vertices ofG which are inV≥p are exactly the
edges ofH which have both endpoints inU ⊆V(H). The clique family inequality corresponding toF
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andp is therefore the odd-set inequality

∑
v∈E(U)

x(v) ≤ ⌊|U |/2⌋. (3)

Ben Rebea [29] considered the problem to studySTAB(G) for quasi-line graphs. Oriolo [26] formu-
lated a conjecture inspired by his work.

Conjecture (Ben Rebea conjecture [26]). The stable set polytope of a quasi-line graph G= (V,E) may
be described by the following inequalities:

(i) x(v) ≥ 0 for each v∈V

(ii) ∑v∈K x(v) ≤ 1 for each maximal clique K

(iii) inequalities (1) for each familyF of maximal cliques and each integer p with|F | > 2p≥ 4 and
|F | modp 6= 0.

In this paper we prove that Ben Rebea Conjecture holds true. This is done by establishing the
conjecture forfuzzy circular interval graphs, a class introduced by Chudnovsky and Seymour [6]. This
settles the result, since Chudnovsky and Seymour showed that the conjecture holds ifG is quasi-line
and not a fuzzy circular interval graph. Interestingly, since all the facets are rank for this latter class of
graphs, the quasi-line graphs that “produce” non-rank facets are the fuzzy circular interval graphs. We
recall that arank inequality is an inequality whose normal vector has only 0/1coefficients.

We first show that we can focus our attention oncircular interval graphs[6] a subclass of fuzzy cir-
cular interval graphs. The weighted stable set problem overa circular interval graph may be formulated
as a packing problem max{cx | Ax≤ b, x∈ Z

n
≥0}, whereb = 1 andA∈ {0,1}m×n is acircular ones ma-

trix, i.e., the columns ofA can be permuted in such a way that the ones in each row appear consecutively.
Here the last and first entry of a row are also considered to be consecutive. Integer programs of this sort
with general right-hand sideb ∈ Z

m have been studied by Bartholdi, Orlin and Ratliff [3]. From this,
we derive a separation algorithm which is based on the computation of a cycle with negative length in
a suitable directed graphD, thereby extending a recent result of Gijswijt [14]. We thenconcentrate on
packing problems with right-hand sideb = α1, whereα is an integer. By studying the structure of the
cycles ofD with negative length, we show that each facet of the convex hull of integer feasible solutions
to a packing problem of this sort has a normal vector with two consecutive coefficients. Instantiating this
result with the case whereα = 1, we obtain our main result.

Cutting planes

Before we proceed, we would like to stress some connections of this work to cutting plane theory. An
inequality cx≤ ⌊δ⌋ is a Gomory-Chv́atal cutting plane[16, 7] of a polyhedronP ⊆ R

n, if c ∈ Z
n is

an integral vector andcx≤ δ is valid for P. TheChv́atal closure Pc of P is the intersection ofP with
all its Gomory-Chvátal cutting planes. IfP is rational, thenPc is a rational polyhedron [31]. The
separation problem forPc is NP-hard [12]. A polytopeP hasChv́atal-rank one, if its Chvátal closure is
the integer hullPI of P, i.e. the convex hull of the integer vectors inP. Let QSTAB(G) be thefractional
stable set polytopeof a graphG, i.e., the polytope defined by non-negativity and clique inequalities,
that is, respectively,−xv ≤ 0 for each vertexv ∈ V, and∑v∈K xv ≤ 1 for each (maximal) cliqueK in
G. A famous example of a polytope of Chvátal-rank one is the fractional matching polytope and thus
QSTAB(G), whereG is a line graph. Giles and Trotter [15] showed that the Chvátal rank ofQSTAB(G)
is at least two, ifG is claw-free. Chvátal, Cook and Hartman [8] showed that theChvátal-rank of
QSTAB(G) grows logarithmically in the number of nodes, even if the stability number ofG is two and
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thus, even ifG is claw-free. Oriolo [26] has shown thatQSTAB(G) has Chvátal rank at least two, ifG is
a quasi-line graph.

An inequality cx≤ δ is called asplit cut [9] of P if there exists an integer vectorπ ∈ Z
n and an

integerπ0 such thatcx≤ δ is valid for P∩{x∈ R
n | πx≤ π0} and forP∩{x∈ R

n | πx≥ π0 +1}. The
split closure Ps of P is the intersection ofP with all its split cuts and this is a rational polyhedron ifP
itself is rational [9, 2]. The separation problem for the split closure is also NP-hard [4]. A polyhedron
P⊆ R

n hassplit-rank one, if Ps = PI . Since a Gomory-Chvátal cutting plane is also a split cut one has
Ps⊆ Pc.

Both cutting plane calculi are simple procedures to derive valid inequalities for the integer hull of a
polyhedron. We show below that a clique family inequality isa split cut forQSTAB(G) with π(v) = 1
if v∈Vp−1∪V≥p, π(v) = 0 otherwise andπ0 = ⌊ n

p⌋. Thus, while the fractional stable set polytope of a
quasi-line graph does not have Chvátal rank one, its split-rank is indeed one.

In the remainder of this section, we present the split-cut derivation of the clique-family inequality.
Notice that the inequality

(p−1) ∑
v∈Vp−1

x(v)+ p ∑
v∈V≥p

x(v) ≤ n = p⌊n/p⌋+ r (4)

is valid for QSTAB(G), since it is the result of summing up the clique inequalitiescorresponding toF
and possibly applying the lower bounds−x(v) ≤ 0 on verticesv∈V≥p which are contained in more than
p cliques. Now consider the disjunction

∑
v∈Vp−1∪V≥p

x(v) ≤ ⌊n/p⌋ ∨ ∑
v∈Vp−1∪V≥p

x(v) ≥ ⌊n/p⌋+1 (5)

Assume now the left inequality of the disjunction (5). Underthis assumption we can write

(p− r −1) ∑
v∈Vp−1

x(v)+ (p− r) ∑
v∈V≥p

x(v) ≤ (p− r) ∑
v∈Vp−1∪V≥p

x(v)

≤ (p− r)⌊n/p⌋,

where the first inequality follows from the lower bounds on the variables.
Assume now the right inequality of the disjunction (5). Together with (4) we can write

(p− r −1) ∑v∈Vp−1
x(v)+ (p− r)∑v∈V≥p

x(v)
= (p−1)∑v∈Vp−1

x(v)+ p∑v∈V≥p
x(v)− r ∑v∈Vp−1∪V≥p

x(v)
≤ (p− r)⌊n/p⌋.

2 From quasi-line graphs to circular interval graphs

In this section we first review some results concerning the structure of quasi-line graphs due to Chud-
novsky and Seymour [6]. We then build upon these results to reduce the proof of the Ben Rebea conjec-
ture to the case where the graph is a circular interval graph.

2.1 Circular Interval Graphs

A circular interval graph[6] G = (V,E) is defined by the following construction, see Figure 1: Take a
circle C and a set of verticesV on the circle. Take a subset of intervalsI of C and say thatu,v∈V are
adjacent ifu andv are contained in one of the intervals.

Any interval used in the construction will correspond to a clique ofG. Denote the family of cliques
stemming from intervals byK I and the set of all cliques inG by K(G). Without loss of generality, the
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Figure 1: A circular interval graph

(intervals) cliques ofK I are such that none includes another. MoreoverK I ⊆ K(G) and each edge ofG
is contained in a clique ofK I . Therefore, if we letA∈ {0,1}m×n be the clique vertex incidence matrix of
K I andV one can formulate the (weighted) stable set problem on a circular interval graph as a packing
problem

max ∑v∈V c(v)x(v)
Ax ≤ 1

x(v) ∈ {0,1} ∀v∈V

where the matrixA is a circular ones matrix (e.g. using clockwise ordering of the vertices).
We point out that the property above may be used as a characterization for circular interval graphs.

In fact, it is easy to see that a graphG(V,E) is a circular interval graph if and only if there exists an
ordering ofV and a setK I of cliques ofG such that:(i) each edge ofG is contained in a clique ofK I ;
(ii) the clique vertex incidence matrix ofK I andV is a circular ones matrix. Finally, circular interval
graphs are also calledproper circular arc graphs, i.e. they are equivalent to the intersection graphs of
arcs of a circle with no containment between arcs [6].

2.2 Fuzzy Circular Interval Graphs

Chudnovsky and Seymour [6] also introduced asuper-classof circular interval graphs calledfuzzy cir-
cular interval graphs. A graphG(V,E) is a fuzzy circular interval if the following conditions hold.

(i) There is a mapΦ from V to a circleC .

(ii) There is a set of intervalsI of C , none including another, such that no point ofC is an endpoint of
more than one interval so that:

(a) If two verticesu andv are adjacent, thenΦ(u) andΦ(v) belong to a common interval.

(b) If two verticesu andv belong to a same interval, which is not an interval with distinct end-
pointsΦ(u) andΦ(v), then they are adjacent.

In this case, we also say that the pair(Φ, I ) gives a fuzzy representationof G.
In other words, in a fuzzy circular interval graph, adjacencies are completely described by the pair

(Φ, I ), except for verticesu andv such thatI contains an interval with endpointsΦ(u) andΦ(v). For
these vertices adjacency is fuzzy. If[p,q] is an interval ofI such thatΦ−1(p) and Φ−1(q) are both
non-empty, then we call the cliques (Φ−1(p),Φ−1(q)) a fuzzy pair. HereΦ−1(p) denotes the clique
{v∈V | Φ(v) = p}.

The left drawing of Figure 2 illustrates a section of a representation of a fuzzy circular interval graph
G. The cliquesΦ−1(p) andΦ−1(r) are fuzzy pairs, sincep andr are the endpoints of an interval. The
node setsΦ−1(p)∪Φ−1(q) andΦ−1(q)∪Φ−1(r) are cliques. The edges with one endpoint inΦ−1(p)
and the other inΦ−1(r) are “fuzzy”. The other interval which starts a little left from q and ends ats can
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be extended a little to the right ofs, sinceΦ−1(q)∪Φ−1(r)∪Φ−1(s) is a clique ofG. Therefore the right
drawing of Figure 2 shows another possible representation of the same graph.

p

q r

s p

q r

s

Figure 2: Two different representations of a fuzzy circularinterval graph

In the following, when referring to a fuzzy circular interval graph, we often consider afuzzy repre-
sentation(Φ, I ) and detail the fuzzy adjacencies only when needed.

Let Q be a subset ofV andv a vertex not inQ. We say thatv is completeto Q if v is adjacent to each
vertex ofQ, while we say thatv is anticompleteto Q if v is not adjacent to any vertex ofQ

Two disjoint cliquesK1 andK2 of size at least two are ahomogeneouspair of cliques [6] if each
vertexv 6∈ K1∪K2 is: either complete toK1 andK2; or anticomplete toK1 andK2; or complete toK1 (K2)
and anticomplete toK2 (K1). Trivially, if [p,q] is an interval ofI such thatΦ−1(p) andΦ−1(q) are both
of size at least two, thenΦ−1(p) andΦ−1(q) is a homogeneous pair.

We also say that a homogeneous pair of cliques(K1,K2) is proper if every vertex ofK1 is neither
complete nor anticomplete toK2 and every vertex ofK2 is neither complete nor anticomplete toK1. A
graph is C4-free if it does not have an induced subgraph isomorphic to a cordless cycle of length 4. For
X ⊆V, we denote byG[X] the subgraph ofG induced by X.

Lemma 1. [5] Let (K1,K2) be a homogeneous pair of cliques. If(K1,K2) is proper, then the subgraph
G[K1∪K2] contains an induced C4.

Proof. For a vertexu∈ K1 let d2(u) be its degree with respect toK2, that isd2(u) = |{v∈ K2 : uv∈ E}|.
Let u1 be a vertex ofK1 with maximum degree with respect toK2. Since(K1,K2) is proper,u1 has a
non-neighborz2 in K2. The same applies toz2 andK1: z2 has a neighboru2 ∈ K1. Finally, there must
exist a vertexz1 ∈ K2 that is a neighbor ofu1 and a non-neighbor ofu2 (otherwised2(u2) > d2(u1)). It
follows that{u1,u2,z1,z2} induce aC4.

Lemma 2. Let G be a fuzzy circular interval graph with a fuzzy representation (Φ, I ). If no fuzzy pair
contains an induced C4, then G is a circular interval graph.

Proof. Let (Φ−1(p),Φ−1(q)) be a fuzzy pair. This pair is homogenous but not proper by Lemma 1. Since
it is not proper, there exists a vertex inΦ−1(p) (resp.Φ−1(q)) that is either complete to anticomplete to
Φ−1(q) (resp.Φ−1(p)).

Suppose thatv ∈ Φ−1(p) is complete toΦ−1(q). Then we can moveΦ(v) by a small amount into
the interior of the interval[p,q]. This yields a new representation(Φ′, I ) of the graphG that does not
introduce new fuzzy pairs and reduces the number of verticeswhich are contained in a fuzzy pair by one.

Similarly, if v∈Φ−1(p) is anticomplete fromΦ−1(q), we can moveΦ(v) such that it is outside[p,q].
This operation yields a new mappingΦ′. In addition to that we must add an intervalI coveringv and its
neighbors in[p,q]. Sincev is adjacent to every vertex which is mapped to the half-open interval [p,q)
and sincev∪Φ′−1 ([p,q)) is a clique, this intervalI can be chosen such that both of its endpoints are not
contained inΦ′(V). This new representation(Φ′, I ∪{I}) does also not introduce new fuzzy pairs - this
is because each of the ends of the new interval is mapped to a single vertex of the graph - and reduces
the number of vertices which are contained in a fuzzy pair by one.

We can iterate this process until there are no fuzzy pairs left.
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2.3 Decomposition of quasi-line graphs

Let G be a graph andL(G) be its line graph. Notice thatG can be build by considering a disjoint union
of stars (associated to every vertex inG) and then identifying some of the edges.L(G) can thus be built
by considering a disjoint union of cliques and identifying some vertices. This construction has been
generalized by Chudnovsky and Seymour [6] through the operations glueandcomposition.

A vertexv is simplicial if its neighbors form a clique. Astrip (G,a,b) is a graphG together with two
designated simplicial verticesa andb. Let (G,a,b) and(G′,a′,b′) be two vertex-disjoint strips. Theglue
of (G,a,b) and(G′,a′,b′) is the graph resulting from the union ofG\ {a,b} andG′ \ {a′,b′} together
with the adjunction of all possible edges between the neighbors ofa (b) in G and the neighbors ofa′ (b′)
in G.

Let G0 be a disjoint union of cliques with an even vertex setV(G0) = {a1,b1, . . . ,an,bn}. Let
(G′

i,a
′
i ,b

′
i) be n strips that are vertex-disjoint, also fromG0. For i = 1, ...,n, let Gi be the graph ob-

tained by gluing(Gi−1,ai ,bi) with (G′
i,a

′
i ,b

′
i). Gn is called thecompositionof the strips(G′

i ,a
′
i ,b

′
i), with

the collection of disjoint cliquesG0.
We observed that a line graph can be built by considering a disjoint union of cliques and identify-

ing some vertices. Gluing a strip that is an induced two-edgepath, with a strip(S,a,b) results in the
identification ofa andb. Therefore any line graphG can be expressed as the composition of strips that
are induced two-edge paths withG0 made of|V(G)| cliques. If we now replace induced two-edge paths
strips by fuzzy linear interval strips (a superclass), we get a large class of quasi-line graphs. Chudnovsky
and Seymour proved in fact the following structural result.

Theorem 3 (Chudnovsky and Seymour [6]). A connected quasi-line graph G is either a fuzzy circular
interval graph, or it is the composition of fuzzy linear interval strips with a collection of disjoint cliques.

Chudnovsky and Seymour were also able to give a complete characterization of the stable set poly-
tope of quasi-line graphs that arenot fuzzy circular interval graphs. LetF = {K1,K2, ...,K2n+1} be an
odd set of cliques ofG. Let T ⊆ V be the set of vertices which are covered by at least two cliques of
F . Then the inequality∑v∈T x(v) ≤ n is a valid inequality forSTAB(G) and inequalities of this type are
called Edmonds inequalities.

Theorem 4 (Chudnovsky and Seymour [6]). If G is the composition of fuzzy linear interval strips with a
collection of disjoint cliques, then all non trivial facetsof STAB(G) are Edmonds inequalities.

2.4 The reduction to circular interval graphs

Observe that Edmonds inequalities are special clique family inequalities associated withF and p = 2.
Therefore, we may give a positive answer to the Ben Rebea Conjecture if we prove that it holds for fuzzy
circular interval graphs. We now show that it will be enough to prove the conjecture for circular interval
graphs.

Lemma 5. Let F be a facet of STAB(G), where G is a fuzzy circular interval graph. Then F is also
a facet of STAB(G′), where G′ is a circular interval graph and is obtained from G by removing some
edges.

Proof. Suppose thatF is induced by the valid inequalityax≤ β, wherea is a vector indexed byV(G).
An edgee is F-critical, if ax≤ β is not valid forSTAB(G\e). If e is notF-critical, thenF is also a facet
of STAB(G\e).

Let (Φ, I) be a fuzzy representation ofG. For every fuzzy pair(K1,K2), we remove all the edges
connecting a vertex inK1 to a vertex inK2 that are non-F -critical. We end up with a fuzzy circular
interval graphG′ which has the same fuzzy representation(Φ, I) asG.
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We claim that no fuzzy pair ofG′ contains aC4 and thus by Lemma 2,G′ is a circular interval graph.
Moreover since we remove only nonF-critical edges,F is still a facet ofSTAB(G′).

Suppose the contrary that there exists a fuzzy pair(K1,K2) of G′ that contains aC4. SayV(C4) =
{u1,u2,v1,v2} with u1,u2 ∈ K1, v1,v2 ∈ K2, u1v1, u2v2 ∈ E(C4). The edgeu1v1 is F-critical. Hence there
exists a setScontainingu1 andv1 such thatSviolatesax≤ β andS is stable inG′ \u1v1. SinceK1 and
K2 form an homogeneous pair,u1 andu2 are adjacent to the same vertices inG′ \K2. This implies that
(S\u1)∪{u2} is a stable set and therefore satisfies the inequality. Therefore a(u2) < a(u1) (else(u1,v1)
is notF-critical). Applying the same argument tou2v2 leads toa(u1) < a(u2). Which is a contradiction.

Remark. We would like to point out here that the following statement can be proved in a similar way as
the proof of Lemma 5: Let F be a facet of STAB(G) where G is a general graph. There exists G′, obtained
from G by removing some edges, such that F is also a facet of STAB(G′) and G′ does not contain any
pair of cliques which is proper and homogeneous.

Lemma 5 shows that each facet of a fuzzy circular interval graph is a facet of a circular interval graph
which is obtained via the deletion of some edges. A clique family inequality of the thereby obtained cir-
cular interval graph is a clique family inequality of the original fuzzy circular interval graph. Therefore,
we now only have to establish the Ben Rebea conjecture for theclass of circular interval graphs. Recall
that the stable set polytope of a circular interval graph is the integer hull of a polyhedron of the form
{x∈ R

n | Ax≤ 1, x≥ 0}, whereA∈ {0,1}m×n is a circular ones matrix.

3 Slicing and separation

In this section we show that the separation problem forSTAB(G) reduces to a min-cost circulation
problem ifG is a circular interval graph. For this, we present a membership algorithm of Gijswijt [14]
and develop it further to retrieve a separating hyperplane.

Let P be a polytopeP = {x∈ R
n | Ax≤ b, x≥ 0}, whereA∈ {0,1}m×n is a circular ones matrix and

b∈ Z
m an integral vector. We consider the separation problem for the integer hullPI of P:

Givenx∗ ∈ R
n, determine, whetherx∗ ∈ PI and if not, determine an inequalitycx≤ δ which

is valid forPI and satisfiescx∗ > δ.

Following Bartholdi, Orlin and Ratliff [3], we consider theunimodular transformationx = T y, whereT
is the unimodular matrix

T =











1
−1 1

−1 1
−1

...
1
−1 1











(6)

The problem then reads, separatey∗ = T−1x∗ from the integer hullQI of the polytopeQ defined by the
system

(

A
−I

)

T y≤

(

b
0

)

. (7)

In the following we denote the inequality system (7) byBy≤ d. Let us rewrite the matrixB asB= (N|v),

i.e. v is then-th column ofB. Observe that, by construction,v is also the last column of

(

A
−I

)

.

Each row of the matrixN has at most one entry which is+1 and at most one entry which is−1. All
other entries are 0. The matrixN is thus totally unimodular. Thus, whenevery(n) is set to an integer
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β ∈ Z, the possible values for the variablesy(1), . . . ,y(n−1) define an integral polytopeQβ = Q∩{y∈
R

n | y(n) = β}. We call this polytopeQβ thesliceof Q defined byβ.
SinceT is unimodular, the corresponding slice of the original polyhedronP∩{x∈R

n |∑n
i=1x(i) = β}

is an integral polyhedron. From this it is already easy to seethat the split-rank ofP is one. However, we
present a combinatorial separation procedure for the integer hull PI of P which computes a split cut via
the computation of a negative cycle.

If y∗(n) is integral, theny∗ lies inQI if and only if y∗ ∈ Qy∗(n). Therefore we assume in the following
that y∗(n) is not integral and letβ be an integer such thatβ < y∗(n) < β + 1 and let 1> µ > 0 be the
real number withy∗(n) = β+1−µ. Furthermore, letQL andQR be the left sliceQβ and right sliceQβ+1

respectively. A proof of the next lemma follows from basic convexity.

Lemma 6. The point y∗ lies in QI if and only if there exist yL ∈ QL and yR ∈ QR such that

y∗ = µyL +(1−µ)yR.

In the following we denote byy∈ R
n−1 the vector of the firstn−1 components ofy∈ R

n. From the
above discussion one hasy∗ ∈ QI if and only if the following linear constraints have a feasible solution.

yL +yR = y∗

NyL ≤ µdL

NyR ≤ (1−µ)dR

, (8)

wheredL = d−βv anddR = d− (β+1)v.
Using Farkas’ Lemma [32], it follows that the system (8) is feasible, if and only if∑n−1

i=1 λ(i)y∗(i)+
µ fLdL +(1−µ) fRdR is nonnegative, wheneverλ, fL and fR satisfy

λ+ fLN = 0
λ+ fRN = 0

fL, fR ≥ 0.
(9)

Now λ+ fLN = 0 andλ+ fRN = 0 is equivalent toλ =− fLN and fLN = fRN. Thus (8) defines a feasible
system, if and only if the optimum value of the following linear program is nonnegative

min− fLNy∗ +µ fLdL +(1−µ) fRdR

fLN = fRN
fL, fR ≥ 0.

(10)

Let w be the negative sum of the columns ofN. Then (10) is the problem of finding a minimum cost
circulation in the directed graphD = (U,A) defined by the edge-node incidence matrix

M =

(

N w
−N −w

)

and edge weightsµ(−Ny∗ +dL),(1−µ)(−Ny∗ +dR) (11)

Thusy∗ /∈ QI if and only if there exists a negative cycle inD = (U,A). The membership problem forQI

thus reduces to the problem of detecting a negative cycle inD, see [14].
A separating split cut fory∗ is an inequality which is valid forQL andQR but not valid fory∗. The

inequality fLNy≤ fLdL is valid forQL and the inequalityfRNy≤ fRdR is valid forQR. The corresponding
disjunctive inequality (see, e.g., [25]) is the inequality

fLNy+c(n)y(n) ≤ δ, wherec(n) = fLdL − fRdR andδ = (β+1) fLdL −β fRdR. (12)

9



The polytopesQL andQR are defined by the systems

y(n) = β
Ny+vy(n) ≤ d

and
y(n) = β+1

Ny+vy(n) ≤ d
(13)

respectively.
Let fL,0 be the numberc(n)− fLv. Then the inequality (12) can be derived from the system defining

QL with the weights( fL,0, fL), i.e., the inequality can be obtained asfL,0 · y(n) + fL · (Ny+ vy(n)) ≤
fL,0 ·β+ fLd. Notice that, ify∗ can be separated fromQI , then fL,0 must be positive. This is becausey∗

violates (12) and satisfies the constraints (13) on the left,where the equalityy(n) = β in the first line is
replaced withy(n) ≥ β. Let fR,0 be the numberc(n)− fRv. Then the inequality (12) can be derived from
the system definingQR with the weights( fR,0, fR). Notice that, ify∗ can be separated fromQI , then fR,0

must be negative.
A negative cycle in a graph withm edges andn nodes can be found in timeO(mn), see, e.g. [1].

Translated back to the original space and to the polyhedronP this gives the following theorem.

Theorem 7. The separation problem for PI can be solved in time O(mn). Moreover, if x∗ ∈P and x∗ 6∈PI

one can compute in O(mn) a split cut cx≤ δ which is valid for PI and separates x∗ from PI together with
a negative integer fR,0, a positive integer fL,0 and a vector fL, fR, which is the incidence vector of a
simple negative cycle of the directed graph D= (U,A) with edge-node incidence matrix and weights as
in (11), such that cx≤ δ is derived with from the systems

1x ≤ β
Ax ≤ b
−x ≤ 0.

and
−1x ≤ −(β+1)

Ax ≤ b
−x ≤ 0,

(14)

with the weights fL,0, fL and | fR,0|, fR respectively.

The above theorem gives an explicit derivation of the separating hyperplane as a split cut ofP. We
have the following corollary.

Corollary 8. The integer hull PI is the split closure of P.

4 The facets of PI for the case b = α ·1

In this section we study the facets ofPI , whereP = {x∈ R
n | Ax≤ b, x≥ 0}, whereA is a circular ones

matrix andb is an integer vector of the formα1, α ∈ N. For this, we actually inspect how the facets
of the transformed polytopeQ described in Section 3 are derived from the systems (13) and apply this
derivation to the original system. It will turn out that the facet normal-vectors ofPI have only two integer
coefficients, which are in addition consecutive. Since the stable set polytope of a circular interval graph
is defined by such a system withα = 1, we can later instantiate the results of this section to this special
case. We can assume that the rows ofA are inclusion-wise maximal, that is, for each rowi, there does
not exists another rowj 6= i such thata jh ≥ aih, for eachh = 1..n.

Let F be a facet ofQI and lety∗ be in the relative interior ofF. This facetF is generated by the
unique inequality (12), which corresponds to a simple cycleof (10) of weight 0. Furthermore assume
thatF is not induced by an inequalityy(n)≤ γ with γ ∈ Z. SinceF is a facet of the convex hull of integer
points of two consecutive slices, we can assume thaty∗(n) = β+1/2 and thus thatµ= 1/2 in (10). This
allows us to rewrite the objective function of problem (10) as follows:

min(s∗ + 1
2v) fL +(s∗− 1

2v) fR (15)
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wheres∗ is the slack vector

s∗ =

(

α1
0

)

−By∗ =

(

α1
0

)

−

(

A
−I

)

x∗ ≥ 0. (16)

The pointx∗ in (16) isx∗ = T y∗. Notice thatx∗ satisfies the systemAx≤ α1.
Furthermore, we are interested in the facets ofQI which are not represented by the systemBy≤ d.

If F is such a facet, then one can translatey∗ away fromQI , without changingy∗(n) = β+1/2, such that
y∗ /∈ QI andBy∗ ≤ d with the property that the facet we are considering is the unique inequality (12),
where fL, fR is a simple negative cycle in the graphD = (U,A).

i i + p
i −1

l l −1

Figure 3: The incidence vector of a row ofA consists of the nodes{i, i +1, . . . , i + p} which are consecu-
tive on the cycle in clockwise order. Its corresponding arc in SL is the arc(i + p, i−1). The arc(l −1, l)
in TL corresponds to the lower boundx(l) ≥ 0.

In the following we denoteU = {1, . . . ,n}, where nodei corresponds to thei-th column of the matrix
M in (11). Notice thatA partitions in two classes of arcsAL andAR. The arcsAR are simply the reverse
of the arcsAL. AL consists of two sets of arcsSL andTL, whereSL is the set of arcs associated with
inequalitiesAx≤ α1 andTL are the arcs stemming from the lower boundsx≥ 0. LikewiseAR can be
partitioned intoSR andTR. In other words, if we look at the arc-node incidence matrixM in (11), the
rows ofM appear in the orderSL,TL,SR,TR.

In particular, leta denote a row vector ofA. SinceA is a circular ones matrix one hasax≤ α ≡

∑p
h=0 x(i +h) ≤ α for some suitablei andp, where computation is modulon, soxn ≡ x0, xn+1 ≡ x1, etc.

It is straightforward to see thatax≤ α generates the arcs(i + p, i − 1) ∈ SL and(i −1, i + p) ∈ SR of
A, see Figure 3. The weights of the two arcs coincide, ifn /∈ {i, i +1, . . . , i + p} and is exactly the slack
α−∑p

h=0x∗(i +h) in this case. Otherwise, the weight of the arc(i + p, i −1) is α−∑p
h=0x∗(i +h)+1/2

and the weight of the arc(i −1, i + p) is α−∑p
h=0x∗(i +h)−1/2.

On the other hand, a lower bound−xi ≤ 0 generates the two arcs(i −1, i) ∈ TL and(i, i −1) ∈ TR.
The weight of both arcs is equal tox∗(i), if i 6= n. If i = n, the arc(n−1,n) ∈ TL has weightx∗(n)−1/2
and(n,n−1) ∈ TR has weightx∗(n)+1/2.

Since the slacks are non-negative, the arcs whose cost is equal to the corresponding slack minus1
2

are the only candidates to have a negative cost. We call thoselight arcs. Consequently we call those arcs
whose cost is equal to the slack plus1

2 heavy. Observe that the light arcs belong toSR∪{(n−1,n)}.

Lemma 9. LetC be a simple negative cycle in D, then the following holds:

(a) C contains strictly more light arcs than heavy ones.

(b) An arc ofC in SL (TL) cannot be immediately followed or preceded by an arc inSR (TR).
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(c) The cycleC contains at least one arc ofSR or contains no arc ofSL ∪SR.

Proof. (a) follows from the fact that the slacks are nonnegative. (b) follows from our assumption that the
rows of the matrixA are maximal and thatC is simple.

To prove (c) suppose that the contrary holds. It follows that(n−1,n) is in C, because it is the only
light arc not inSR. We must reachn−1 on the cycle without using heavy arcs.

Each arc inSL with starting noden is heavy. Thus(n−1,n) is followed by(n,1) ∈ TL. Suppose that
(n−1,n) is followed by a sequence of arcs inTL leading toi and let(i, j) /∈ TL be the arc which follows
this sequence. It follows from (b) that(i, j) /∈ TR and thus that(i, j) ∈ SL. Since(i, j) cannot be heavy,
we have 1≤ j < i < n. This is a contradiction to the fact thatC is simple, since we have a sub-cycle
contained inC, defined by(i, j) and( j, j +1), . . . ,(i −1, i).

Lemma 10. If there exists a simple cycleC of D with negative cost, then there exists a simple cycleC′ of
D with negative cost that does not contain any arc fromSL.

Proof. Suppose thatC contains an arc from the setSL. We know from Lemma 9 that the cycleC contains
at least one arc ofSR. Lemma 9 implies thatC has an arc inSL, followed by arcs inTL or TR but not
both, followed by an arc inSR. We first consider the case that the intermediate arcs are allin TL.

ki −1 j −1 l

A B C
(a)

ki −1 j −1 l

A B C
(b)

Figure 4: (a) depicts an arc(k, i −1) ∈ SL, followed by arcs inTL and the arc( j −1, l) ∈ SR. (b) depicts
the situation, where the intermediate arcs are inTR.

This situation is depicted in Figure 4, (a). The arc inSL is (k, i − 1). This is followed by the arcs
(i −1, i), . . . ,( j −2, j −1) in TL and the arc( j −1, l) in SR. Let this be the pathP1. We now show that
we can replace this path with the pathP2 = (k,k+1), . . . ,(l −1, l) consisting of arcs inTL. We proceed
as follows. First we show that the weight of this path is at most the weight of the original path, where we
ignore the addition of±1/2 to the arc-weights. Let light(P) and heavy(P) be the number of light and
heavy edges in a pathP, respectively. We then show that light(P2)−heavy(P2) = light(P1)−heavy(P1),
from which we can conclude the claim in this case.

Consider the set of indicesA = {i, . . . , j −1}, B = { j, . . . ,k} andC = {k+1, . . . , l} and the numbers
A = ∑µ∈A x∗(µ), B = ∑µ∈B x∗(µ) andC = ∑µ∈C x∗(µ) . Ignoring the eventual addition of±1/2 to the
edge weights, we have that the weight ofP2 is C and that ofP1 is α− (A+ B)+ A+ α− (B+C) and
suppose that this is less thanC. ThenB+C > α which is not possible, sincex∗ satisfies the constraints
Ax≤ α1. Thus, if none of the edges inP1 andP2 is heavy or light, the weight ofP2 is at most the weight
of P1.

Suppose now thatn ∈ A . ThenP1 contains exactly one heavy edge(k, i − 1) and one light edge
(n−1,n). The pathP2 contains no heavy or light edge. Suppose thatn∈ B , thenP1 contains exactly one
heavy edge,(k, i −1) and one light edge( j −1, l). P2 does not contain a heavy or light edge. Ifn∈ C ,
thenP1 contains exactly one light edge( j −1, l) and no heavy edge.P2 also contains exactly one light
edge(n−1,n). This concludes the claim for the case that an arc ofSL is followed by arcs ofTL and an
arc ofSR.

The case, where the intermediate arcs belong toTR is depicted in Figure 4, (b). The assertion follows
by a similar argument.
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Combining Theorem 7 with the above lemma we obtain the following theorem.

Theorem 11. Let P= {x ∈ R
n | Ax≤ α1,x ≥ 0} be a polyhedron, where A∈ {0,1}m×n is a circular

ones matrix andα ∈ N a positive integer. A facet of PI is of the form

a ∑
v∈T

x(v)+ (a−1) ∑
v/∈T

x(v) ≤ aβ, (17)

where T⊆ {1, . . . ,n} and a,β ∈ N.

Proof. Theorem 7 implies that a facet which is not induced byAx≤ α1, x≥ 0 or1x≤ γ is a nonnegative
integer combination of the system on the left in (14) with nonnegative weightsfL,0, fL. Lemma 10 implies
that fL can be chosen such that the only nonzero (+1) entries of fL are corresponding to lower bounds
−x(v) ≤ 0. The theorem thus follows witha = f0,L andT set to those variables, whose lower bound
inequality does not appear in the derivation.

5 The solution of the Ben Rebea Conjecture

Let G be a circular interval graph and letK I the family of cliques stemming from the intervals in the
definition ofG (see Section 2). ThenP= {x∈Rn |Ax≤ 1,x≥ 0} where the 0/1 matrixA, corresponding
to the cliquesK I , has the circular ones property. Theorem 11 implies that anyfacet ofSTAB(G) is of the
form

a ∑
v∈T

x(v)+ (a−1) ∑
v6∈T

x(v) ≤ a·β (18)

whereT ⊆ {1, . . . ,n} anda,β ∈ N.
We now show that a facetF, which is not induced by an inequality ofAx≤ 1,x ≥ 0 is induced by

a clique family inequality associated with some set of cliquesF ⊆ K I and some integerp. Recall from
Theorem 7 that any facet of this kind can be derived from the system

−1x ≤ −(β+1)
Ax ≤ 1
−x ≤ 0,

(19)

with weights| fR,0|, fR, where fR,0 is a negative integer whilefR is a 0-1 vector. Aroot of F is a stable
set, whose characteristic vector belongs toF. In particular, we have that the multiplierfR(v) associated
with a lower bound−x(v) ≤ 0 must be 0 ifv belongs to a root of sizeβ+1. If v does not belong to a root
of sizeβ or to a root of sizeβ+1, then the facet is induced byx(v) ≥ 0. Thus ifv /∈ T, thenv belongs to
a root of sizeβ+1.

Let F = {K ∈ K I | fR(K) 6= 0} andp = a+ | fR,0|. The multiplier| fR,0| must satisfy

−| fR,0|+ |{K ∈ F | v∈ K}| = a−1 ∀v 6∈ T
−| fR,0|+ |{K ∈ F | v∈ K}| = a ∀v∈ T, v is in a root of sizeβ+1
−| fR,0|+ |{K ∈ F | v∈ K}| ≥ a ∀v∈ T, v is not in a root of sizeβ+1

−| fR,0|(β+1)+ |F | = aβ

Observe that|F |= (a+ | fR,0|)β+ | fR,0| and thereforer = |F | modp= | fR,0|. Moreover, any vertex not
in T belongs to exactlyp−1 cliques fromF , while each vertex inT belongs to at leastp cliques from
F . Therefore, inequality (18) is the clique family inequality associated withF andp. In particular since
a≥ 1 and| fR,0| ≥ 1, it follows thatp≥ 2. We may therefore state the following theorem.

Theorem 12. Let G be a circular interval graph. Then any facet of STAB(G), which is not induced by
an inequality of the system Ax≤ 1, x ≥ 0, is a clique family inequality associated with someF and p
such that|F | modp 6= 0.
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If we combine this result with Lemma 5, Theorem 4 and we recallthat Edmonds inequalities are also
clique family inequalities associated with|F | odd andp = 2, we obtain the following.

Theorem 13. Let G be a quasi-line graph. Any non-trivial facet of STAB(G) is a clique family inequality
associated with someF and p such that|F | modp 6= 0.

The Ben Rebea conjecture is now almost settled. Inspecting it again, we observe that apart from the
statement that the stable set polytope is described by nonnegativity, clique and clique family inequalities
it contains also conditions onF andp. We may assume that the cliques in the familyF are maximal [26].
What remains is the condition|F | > 2p≥ 4. This is settled in the following, where we also show that
clique family inequality are facet inducing only ifV≥p 6= /0.

Lemma 14. A clique family inequality associated withF and p is facet inducing only if V≥p 6= /0.

Proof. If V≥p = /0, then the clique family inequality associated withF andp reads:

(p− r −1) ∑
v∈Vp−1

x(v) ≤ (p− r)

⌊

n
p

⌋

(20)

NB: r 6= 0 since otherwise, the inequality reads(p−1)∑v∈Vp−1
x(v) ≤ n and is dominated by the sum

of the clique inequalities inF , a contradiction.
The vertices ofV≥p−1 are covered by p-1 cliques ofF . Thus the inequality∑Vp−1

x(v)≤⌊ n
p−1⌋ is valid

for STAB(G). We will prove that this inequality dominates (20). It is trivial if p− r −1 = 0. Otherwise,
we simply have to prove that⌊ n

p−1⌋< p−r
p−r−1⌊

n
p⌋. This is true if and only if(p− r−1)⌊ n

p−1⌋< (p− r)⌊ n
p⌋

i.e. if and only ifn− r ′− r⌊ n
p−1⌋ < n− r − r⌊ n

p⌋ wherer ′ = n mod(p−1). Now clearly⌊ n
p−1⌋ ≥ ⌊ n

p⌋.
If ⌊ n

p−1⌋ = ⌊ n
p⌋, it is clear thatr ′ > r since⌊ n

p⌋ 6= 0 and the result follows. If⌊ n
p−1⌋ ≥ ⌊ n

p⌋+ 1, the
result holds ifr ′ > 0 or r ′ = 0 and⌊ n

p−1⌋ > ⌊ n
p⌋+1. If r ′ = 0 and⌊ n

p−1⌋ = ⌊ n
p⌋+1, inequality (20) and

∑Vp−1
x(v) ≤ ⌊ n

p−1⌋ coincide but sincer ′ = 0, the later inequality is again dominated by the sum of the
clique inequalities inF , a contradiction.

Lemma 15. Let G be a quasi-line graph and(F , p) a pair such that

(p− r −1) ∑
v∈Vp−1

x(v)+ (p− r) ∑
v∈V≥p

x(v) ≤ (p− r)

⌊

|F |

p

⌋

(21)

is a facet of STAB(G). If |F | < 2p, then the inequality(21) is a clique inequality.

Proof. We know from the previous lemma thatV≥p 6= /0. Since
⌊

|F |
p

⌋

= 1, if Vp−1 = /0 or p− r = 1, then

the inequality (21) is a clique inequality, and we are done. Therefore we may assume thatVp−1 6= /0 and
p− r > 1. Since the inequality is facet inducing, thenp− r = 2 and it reads:

∑
v∈Vp−1

x(v)+2 ∑
v∈V≥p

x(v) ≤ 2 (22)

Trivially, the inequality is also facet-inducing for the induced subgraphG′ = G[Vp−1∪V≥p]. A full
description of the stable set polytope of graphs with stability number less than three, asG′, is given in
[21]. There it is shown that an inequality∑v∈Ax(v)+ 2∑v∈B x(v) ≤ 2, with A andB both non-empty, is
facet inducing only ifB is a clique,A andB are complete and there is an odd antihole inG[A]. But no
vertex of a quasi-line graph is complete to an odd antihole (from the definition of quasi-line graphs), so
there is a contradiction.

We may therefore state our main result:

Theorem 16. Ben Rebea’s conjecture is true.
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