
A

Solving the weighted stable set problem in claw-free graphs via decomposition

YURI FAENZA, Università di Padova

GIANPAOLO ORIOLO, Università di Roma “Tor Vergata”

GAUTIER STAUFFER, Université Bordeaux 1

We propose an algorithm for solving the maximum weighted stable set problem on claw-free graphs that runs in O(|V |(|E|+
|V | log |V |))−time, drastically improving the previous best known complexity bound. This algorithm is based on a novel
decomposition theorem for claw-free graphs, which is also introduced in the present paper. Despite being weaker than
the structural results for claw-free graphs given by Chudnovsky and Seymour [2005], [2008], [2008] our decomposition
theorem is, on the other hand, algorithmic, i.e., it is coupled with an O(|V ||E|)−time algorithm that actually produces the
decomposition.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Stable sets, Claw-free graphs, Decomposition

ACM Reference Format:

Faenza, Y., Oriolo, G., and Stauffer, G. 2011. Solving the weighted stable set problem in claw-free graphs via decomposition.
ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Given a graph G(V, E), a matching is a set of non incident edges of E and a stable set is a set of
pairwise non adjacent vertices of V . Edmonds [1965] proved that the weighted matching problem
can be solved in O(|V |4)-time for any graph. This worst case complexity was later improved by other
authors, the best bound currently being O(|V |(|V |log|V | + |E|) [Gabow 1990]. (Unless otherwise
specified, graphs in this paper are undirected and simple. Sometimes, for a graph G, we let V (G)
and E(G) denote respectively the vertex set and the edge set.)

Given a (multi-)graph G, one defines the line graph H of G as the intersection graph of the edges
of G. G is called a root graph of H . A graph H is then said to be line if it is the line graph of some
(multi-)graph G. There is a one-to-one correspondence between matchings in G and stable sets in
H . Therefore, since a root graph G of a line graph H can be computed efficiently (this can be done in
O(max{|E(H)|, |V (H)|})-time, see [Roussopoulos 1973] for line graphs of simple graphs and [King
2009, pp 67-68] for line graphs of multi-graphs), a maximum weighted stable set (MWSS, in the
following) in H can be found in time O(|V (H)|2log(|V (H)|)) (observe that the root graph will have
|V (H)| edges and O(|V (H)|) vertices).

Line graphs have the property that the neighborhood of any vertex can be covered by two cliques,
and the graphs with this latter property are called quasi-line graphs. A claw {u; s1, s2, s3} is the
graph with vertices u, s1, s2, s3 and edges usi for i = 1, 2, 3; a graph is claw-free if no induced sub-
graph of G is isomorphic to a claw, i.e., if no vertex has a stable set of size three in its neighborhood.
Claw-free graphs thus generalize quasi-line graphs, that in their turn generalize line graphs. In-
terestingly, the crucial augmenting path property of matchings extends to stable sets in claw-free
graphs: a stable set of a claw-free graph is of maximum size if and only if there are no augmenting
paths with respect to it (a path P is augmenting with respect to a stable set S if (V (P)\S)∪(S\V (P))
is a stable set of size |S|+1). In fact, while the stable set problem is NP-hard in general, it was
proven it can be solved in polynomial time for claw-free graphs: Sbihi [1980] and later Lovász and
Plummer [1986] gave algorithms for the cardinality case, while Minty [1980] solved the weighted
version. The Minty algorithm was revised by Nakamura and Tamura [2001] and later simplified

Yuri Faenza’s research was supported by the Progetto di Eccellenza 2008-2009 of the Fondazione Cassa di Risparmio di
Padova e Rovigo.
Author’s addresses: Y. Faenza, Dipartimento di Matematica Pura e Applicata, Università di Padova, Padua, Italy.
Gianpaolo Oriolo, Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”, Rome, Italy.
Gautier Stauffer, Bordeaux Institute of Mathematics, Université Bordeaux 1, 351 cours de la Liberation, 33405 Talence,
France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Y. Faenza et al.

by Schrijver [2003] and can be implemented to run in time O(|V |6) for a claw-free graph G(V, E).
However, recently Nobili and Sassano [2010] could build upon the main ideas of Minty’s algorithm
and solve the problem in time O(|V |4log(|V |), a significant improvement.

A deep breakthrough in our understanding of the structure of claw-free graphs is due to the recent
seminal work of Chudnovsky and Seymour, see e.g. [2008], [2008]. The theory is too complex to
describe in detail here (a good starting point is [Chudnovsky and Seymour 2005] where the authors
overview their series of papers). In particular, a deep decomposition theorem for claw-free graphs
is given in [Chudnovsky and Seymour 2008]. Inspired by those results, Oriolo, Pietropaoli and
Stauffer [2008] proposed a new approach to solve the MWSS problem on graphs that admit a suitable
decomposition, when this decomposition is given (in the same paper, the authors also developed a
O(|V |6)-time algorithm for the problem in claw-free graphs, by means of some graph reductions
and an algorithmic decomposition theorem for a subclass of quasi-line graphs). Note that, in order
to combine the results in [Chudnovsky and Seymour 2008] and [Oriolo et al. 2008] together, as
to get an algorithm to solve the MWSS problem in claw-free graphs, one needs a (polynomial time)
algorithm to get the decomposition in [Chudnovsky and Seymour 2008]. Until very recently no
such algorithm was available; however, while preparing this paper, we knew that a lighter version
of the result in [Chudnovsky and Seymour 2008] has been algorithmized by Hermelin, Mnich, van
Leeuwen and Woeginger [2011].

In this paper, we provide a new decomposition theorem for claw-free graphs and a O(|V ||E|)-time
algorithm to actually obtain the decomposition. Our theorem is inspired by ideas and tools devel-
oped by Chudnovsky and Seymour (as well as by the weaker decomposition theorem in [Oriolo et al.
2008]), but it is a stand-alone result that, even if less detailed than their decomposition theorem, is
particularly useful when dealing with the MWSS problem. In fact, building upon our novel decompo-
sition theorem, a few algorithmic results from the literature, and following the approach in [Oriolo
et al. 2008] for finding a MWSS on graphs that admit a suitable decomposition, we show that we
can solve the MWSS problem in a claw-free graph G(V, E) in O(|V |(|E|+ |V | log |V |))−time. This is to
the best of our knowledge the fastest algorithm to solve the problem and this improves drastically
upon previous known algorithms. Moreover it almost closes the algorithmic gap between stable set
in claw-free graphs and matching (in fact, as observed earlier, the MWSS problem in a line graph
G(V, E) can be solved in O(|V |2log(|V |))-time).

We emphasize that our algorithms are simple and that they can be implemented: in fact a simpli-
fied version of our MWSS algorithm was implemented recently (and tested) in python by Dubois and
Rouire, two first year master students at the University of Bordeaux ; Dubois, Rouire and Stauffer
are planing to contribute this algorithm to networkx, a python package for graph structures and
algorithms. Also, in order to reach the aforementioned time-complexity, they only use elementary
data structures. Finally, we believe that our algorithmic decomposition result is interesting on its
own and might be also useful to solve other kind of problems on claw-free graphs.

1.1. A bird’s-eye view of the paper

In the following, we discuss how the paper is organized and give a few more details about the main
results in it, and the way they relate to other results in the literature.

Section 2 is devoted to the definition of strips and their basic properties, while Section 2.1 deals
with the MWSS problem in graphs that are the composition of strips. By now, it is enough to recall
that a strip is a graph with either one or two designated cliques, called extremities, and that in
order to compose some set of strips we have first to take the disjoint union of the strips, and then
make some extremities pairwise complete to each other, i.e., “glue” them together. As we discuss
in Section 2, the composition of strips can be seen as a generalization of a procedure to build line
graphs; in fact, the main result of Section 2.1 is Theorem 2.10 showing that, if we are interested in
solving the MWSS problem on a (general) graph G that is the composition of some given set of strips,
and we are able to solve the MWSS problem on each strip, then a MWSS of G can be found by solving
a single matching problem .

From Section 3 on, we will focus on claw-free graphs. In order to find a strip decomposition of a
claw-free graph, we have to somehow revert the composition procedure described above, and, there-
fore, find some suitable clique to “unglue”: this will require a careful analysis of the neighborhood of
each vertex. Let v be a vertex of a claw-free graph G: if the closed neighborhood of v, i.e., N(v)∪{v},
can be covered by two cliques K1, K2, then v is called regular, and, in case this covering is unique,
K1 and K2 are crucial for v. An articulation cliques is a maximal clique K that is crucial for each
of its vertices. We will show that every claw-free graph G, that has some articulation clique, ad-
mits a strip decomposition. When G is quasi-line things are much easier as, in order to get this
decomposition, it is sufficient to simultaneously unglue all articulation cliques, while, when G is
not quasi-line, i.e., there are some vertices that are non-regular, we first have to remove a strip

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:3

“around” each non-regular vertex, as to end up with a quasi-line graph, where we can proceed as in
the former case.

We will in fact have two slightly different decomposition theorems, one for quasi-line graphs and
one for claw-free non quasi-line graphs (one can easily combine them as to get a decomposition
theorem for all claw-free graphs). The main decomposition result for quasi-line graphs is Theorem
4.8, for which we give here a lighter statement:

THEOREM 1.1. Let G(V, E) be a connected quasi-line graph. There exists an algorithm that in
time O(|V ||E|):
(j) either recognizes that G is net-free;

(jj) or provides a strip-decomposition of G, such that, for each strip, the graph in the strip is distance
simplicial with respect to its extremities.

(See Definition 1.6 for net-free graphs and Definition 1.5 for graphs that are distance simplicial
with respect to some clique.) We will in fact show (Lemma 3.10) that a claw-free graph without
articulation cliques is net-free. Following Theorem 1.1, in order to solve the MWSS problem in a
quasi-line graph, we delve into two cases. In Section 3.1 we deal with the case where G(V, E) is
{claw, net}-free (and therefore quasi-line and net-free); in this case, we will provide an O(|V ||E|)-
time algorithm that builds upon two results from the literature: an O(|V |4)-time algorithm to solve
the maximum stable set problem in the weighted case by Pulleyblank and Shepherd [1993], and
an O(|V |3)-time algorithm for the cardinality case by Brandstadt and Dragan [2003]. In Section
4.1 we deal with the case where G has a strip decomposition as in part (jj) of Theorem 1.1; there,
following Theorem 2.10, it is enough to show how to solve the MWSS problem in a graph that is
distance simplicial with respect some clique: to this purpose the algorithm in [Pulleyblank and
Shepherd 1993] suffices.

We point out that Theorem 1.1 is quite similar to the following theorem by Chudnovsky and
Seymour (we skip the definitions of fuzzy circular interval graph and fuzzy linear interval strips,
as we do not need them in the following):

THEOREM 1.2. [Chudnovsky and Seymour 2005] Let G(V, E) be a connected quasi-line graph.

(j) Either G is a fuzzy circular interval graph;
(jj) or G is the composition of fuzzy linear interval strips.

So far we have not investigated which are the relationships between the two theorems. However,
we point out that Theorem 1.1 is an algorithmic theorem, while Theorem 1.2 is not. On the other
hand, while Theorem 1.2 could be used to prove the Ben Rebea conjecture [Eisenbrand et al. 2008],
we do not know how to use Theorem 1.1 to get the same result; so this might suggest that Theorem
1.2 gives more details about the structure of quasi-line graphs.

The main decomposition theorem for claw-free graphs is Theorem 5.6, for which we again offer
here a lighter statement:

THEOREM 1.3. Let G(V, E) be a connected claw-free but not quasi-line graph. There exists an
algorithm that in time O(|V ||E|):

(i) either recognizes that α(G) ≤ 3;
(ii) or provides a strip-decomposition of G, such that, for each strip, the graph in it is:

— either non quasi-line and with stability number at most 3;
— or distance simplicial with respect the extremities of the strip.

(The stability number of a graph is the maximum size of a stable set). Chudnovsky and Seymour
also offer a decomposition theorem for claw-free graphs, that for our purposes is enough to describe
as follows:

THEOREM 1.4. [Chudnovsky and Seymour 2008] Let G(V, E) be a connected claw-free but not
quasi-line graph.

(j) Either α(G) ≤ 3 and G belongs to a small set of basic graphs;
(jj) or G is the composition of strips that are:

— either from a small number of basic classes of strips, each such that the graph in it is non-quasi-
line and has stability number at most 3;

— or fuzzy linear interval strips.

In fact, the structure of claw-free graphs and strips that have small stability number is described
in detail by Chudnovsky and Seymour. That is not the case with Theorem 1.3; on the other hand,
our main motivation is the solution of the MWSS problem, and with respect to that aim Theorem

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Y. Faenza et al.

1.3 suffices. In fact, when α(G) ≤ 3, we can compute a MWSS by enumeration. When G has a strip
decomposition as in part (ii) of Theorem 1.3, following Theorem 2.10, it is enough to show how to
solve the MWSS problem in a graph that is distance simplicial with respect some clique (see above)
and in a graph with small stability number (enumeration).

Before moving to settling some more definitions, we conclude this section with a couple of com-
putational remarks. Recall that, for a graph G on n vertices, we can obtain in O(n2)−time a repre-
sentation of G via adjacency lists from a representation of G via adjacency matrix, and vice versa.
Often, this O(n2) extra time will not affect the global running time. So, unless differently stated, we
shall assume that the graphs we deal with (and in particular the input graph) are stored via either
representations. Last, it will be sometimes convenient to assume that we are given some linear
order on the set of vertices of the input graph (e.g. the one induced when the graph is stored).

1.2. Definitions

For a non-negative integer k, we let [k] denote the set {1, 2, . . . , k}.
Let G(V, E) be a graph. The complement of G is denoted by G, while G[S] denotes the subgraph

induced by a set S ⊆ V . If S ⊆ V , we let G \ S := G[V \ S]. A clique is a set of pairwise adjacent
vertices. We denote by α(G) (αw(G)) the maximum size (resp. weighted with respect to w : V 7→ R)
stable set in G, and, for a set S ⊆ V , we let α(S) = α(G[S]) (resp. αw(S) = αw(G[S])).

We denote by N(v) the open neighborhood of a vertex v ∈ V , i.e., the set of vertices that are
adjacent to v; we let N [v] = N(v) ∪ {v} be the closed neighborhood. For a set S ⊆ V we let N(S) :=⋃

v∈S N(v) \ S and N [S] :=
⋃

v∈S N [v]. A vertex u is universal to v if N [v] ⊆ N [u] and we let U(v) be
the set of vertices that are universal to v and let U [v] ∪ {v}. Two vertices u and v that are universal
to each other are true twins. We also denote by Nj(v) the set of vertices that are at distance j (in
terms of number of edges) from v (therefore N1(v) = N(v)). A vertex v ∈ V is simplicial if N(v) is a
clique, and we denote by Simp(G) the set of simplicial vertices of G.

Definition 1.5. We say that a clique K of a connected graph G is distance simplicial if, for every
j, α(Nj(K)) ≤ 1. In this case, we also say that G is distance simplicial with respect to K.

Definition 1.6. A net {v1, v2, v3; s1, s2, s3} is the graph with vertices v1, v2, v3, s1, s2, s3 and edges
v1v2, v1v3, v2v3, and visi for i = 1, 2, 3. v1, v2, v3 is called the triangle of the net. We say that G is
net-free if no induced subgraph of G is isomorphic to a net and call net clique every maximal clique
of G that contains the triangle of a net.

Let k ≥ 3. A k−hole is a chordless cycle with k vertices. A k-anti-hole is the complement of a
k−hole. A k−wheel is a graph with vertex set {v}∪C, where C induces a k-hole and v is complete to
C: v is the center of the wheel. Analogously, a k−anti-wheel is a graph with vertex set {v}∪C, where
C induces a k-anti-hole, and v is complete to C: v is the center of the anti-wheel. A k−hole (resp.
k-anti-hole, k-wheel, k-antiwheel) is odd if k is odd. We say that a k-anti-wheel is long if k > 5.

2. STRIPS AND THE STABLE SET PROBLEM

Chudnovsky and Seymour [2005] introduced a composition operation in order to define their struc-
tural results for claw-free graphs. This composition operation is general and applies to non-claw-free
graphs as well. In order to better grasp this operation, we first deal with an algorithmic procedure
that can be used to build line graphs.

Given a graph G, each vertex in G is associated with a clique in the line graph H = L(G) (all
edges incident to this vertex are pairwise adjacent in H). If we let F denote the family of cliques of
H that are associated with vertices of G, we observe that F has the following properties: (i) every
edge of H is covered by some clique of F ; (ii) every vertex of H is covered by exactly two cliques of
F . Krausz [1943] proved the following:

LEMMA 2.1. [Krausz 1943] A graph G(V, E) is the line graph of a multi-graph if and only if
there exists a family of cliques F such that every edge in E is covered by a clique from the family,
and moreover every vertex in V is covered by at most two cliques from the family.

This theorem gives an algorithmic procedure to build line graphs. This procedure requires as
input a set of vertices V and a partition P = P1, ..., Pq of the multi-set V ∪ V . It then associates to
the pair (V,P) the graph G with vertex set V and edge set E := {{u, v} : u 6= v and both u, v ∈ Pi,
for some 1 ≤ i ≤ q}. Chudnovsky and Seymour generalized the above construction, essentially by
replacing vertices with strips. We borrow (but slightly change) some definitions of theirs.

Definition 2.2. A strip (G,A) is a graph G (not necessarily connected) with a multi-family A of
either one or two designated non-empty cliques of G.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:5

If A is made of a single clique, then (G,A) is a 1-strip, if A is made of two cliques A1, A2, then
(G,A) is a 2-strip (in this case, possibly A1 = A2 since A is a multi-family). The cliques in A are
called the extremities of the strip, while the core C(G,A) of the strip is made of the vertices that do
not belong to the extremities.

Let G = {(G1,A1), . . . , (Gk,Ak)} be a family of k vertex disjoint strips; we can compose the strips
in G, according to the operation we define below. Note that we denote by

⋃
j∈[k] Aj the multi-family

whose elements are the extremities from each Aj : again, it is a multi-family, as the two extremities
of a same strip need not to be different.

Definition 2.3. Let F = {(G1,A1), . . . , (Gk,Ak)} be a family of k vertex disjoint strips and let
P := {P1, ..., Pm} be a partition of the multi-family of the extremities

⋃
j∈[k] Aj . The composition of

the family of strips F with respect to the partition P is the graph G such that:

— V (G) =
⋃k

j=1 V (Gj);

— two vertices u, v ∈ V (G) are adjacent if and only if either u, v ∈ V (Gj) and {u, v} ∈ E(Gj), for
some j ∈ [k], or there exist A ∈ Ai and A′ ∈ Aj , for some 1 ≤ i ≤ j ≤ k, such that u ∈ A, v ∈ A′, and
A and A′ are in the same class of P .

In this case, we say that (F ,P) defines a strip decomposition of G. Note also that, for each class
P ∈ P , the set of vertices

⋃
A∈P A is a clique of G, that is called a partition-clique.

In the following, when we say that G is the composition of some family of strips with respect to
some partition P , we assume that the strips are vertex disjoint and that P gives a partition of the
multi-family of the extremities of these strips. We skip the straightforward proof of the next lemma:

LEMMA 2.4. Let G be the composition of a family of strips {(G1,A1), . . . , (Gk,Ak)}, with respect
to some partition P . Then the following statements hold:

— for each j ∈ [k], the core C(Gj ,Aj) of the strip (Gj ,Aj) is anti-complete to V (G) \ V (Gj) and
G[C(Gj ,Aj)] = Gj [C(Gj ,Aj)];

— for each j ∈ [k], G[V (Gj)] = Gj if either Gj is a 1-strip, or it is a 2-strip and its extremities belong
to different classes of P ; else G[V (Gj)] is obtained from Gj making the extremities in Aj complete
to each other.

— each edge between different strips Gi and Gj is an edge between their extremities and is induced by
some partition-clique.

One can easily build a graph G that is the composition of strips {(Gj ,Aj), j ∈ [k]} such that
each Gj is claw-free/quasi-line/line but G itself is not claw-free/quasi-line/line. However, this is
not possible, as soon as we require that, for each strip, the property we are interested in (claw-
freeness/quasi-lineness/lineness) holds on an auxiliary graph that we associate to the strip. This
leads to the following:

Definition 2.5. We say that a strip (G,A) is claw-free/quasi-line/line if the graph G+ that is
obtained from G as follows:

— if G is a 2-strip, with A = {A1, A2}, add two additional vertices a1, a2 such that N(ai) = Ai, for
i = 1, 2;

— if G is a 1-strip, with A = {A1}, add one additional vertex a1 such that N(a1) = A1,

is claw-free/quasi-line/line.

We skip the proof of the following simple lemma.

LEMMA 2.6. The composition of claw-free/quasi-line strips is a claw-free/quasi-line graph.

LEMMA 2.7. Let G be the composition of a family of k line strips {(Gj ,Aj), j ∈ [k]} with respect
to a partition P . Then G is a line graph.

PROOF. From Lemma 2.1, we know that the strips Gj are line if and only if, for all j = 1, ..., k,
there exists a set of cliques F j of Gj

+ such that: every edge from Gj
+ is covered by a clique of F j ;

each vertex in Gj
+ is covered by at most two cliques of F j . In fact, we may assume without loss of

generality that the set F j is also such that the vertices from V (Gj
+) \V (Gj), that are simplicial, are

covered by exactly one clique of F j (if a vertex v of V (Gj
+) \ V (Gj) is covered by two cliques F1, F2,

then we can slightly change F j into F j \ {F1, F2} ∪ {N [v]}). We denote by F j the set of cliques of F j

covering the vertices from V (Gj
+) \ V (Gj) (F j is of cardinality one if (Gj ,Aj) is a 1-strip and two if

(Gj ,Aj) is a 2-strip). Let F̃ j := F j \ F j . Consider the family of cliques F̃ of G made of the union of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Y. Faenza et al.

F̃ j for all j and the partition-cliques defined by P . By definition of composition, F̃ covers all edges
in G and moreover every vertex in G is covered by at most two cliques. The result follows then again
from Lemma 2.1.

(We point out that one might impose properties on the strips {(Gj ,Aj), j ∈ [k]} in order to avoid
using the artifact of additional vertices, and still get an analogous of Lemma 2.6 and Lemma 2.7, see
[Chudnovsky and Seymour 2008]: for our purpose, this unnecessarily complicates the exposition.)

2.1. The maximum weighted stable set problem in composition of strips

In this section, we show that we can solve, in polynomial time, the maximum weighted stable set
problem in a graph G that is the composition of strips, as soon as we are able to solve in polytime
the same problem on each strip of G. The main tools are Lemma 2.7 and a simple reduction that
replaces each strip with a simple line strip.

More precisely, let G(V, E) be the composition of k strips H1 = (G1,A1), . . . , Hk = (Gk,Ak), with
respect to a partition P and let w : V (G) 7→ R. We show that we can replace each strip Hi with a
simple line strip H ′

i and reduce the mwss problem on G to the same problem on a graph G∗, that is
the composition of the strips H ′

1, H
′
2, . . . , H

′
k with respect to a suitable partition P∗, where we define

a suitable weight function w∗ : V (G∗) 7→ R. As G∗ is line from Lemma 2.7 and we can build a root
graph easily, we can find a MWSS by solving a matching problem.

The rationale in replacing a strip, say H1, with another strip H ′
1 is the following. The only possible

obstruction to combine a stable set T of G \ V (G1) and a stable set U of G1 into a stable set of G are
the adjacencies in the partition-cliques involving the extremities of H1. Because those extremities
are cliques, there are four possible configurations describing the interactions between U and the
extremities of H1 (by now assume that H1 is a 2-strip): U contains a vertex in both extremities; U
contains a vertex in one or the other extremity; U does not contain any vertex in the extremities.
When one is interested in a MWSS of G then, given the stable set T for G \ V (G1), one obviously
wants the stable set U to be of maximum weight among the stable sets from configurations that are
compatible with T . Hence, we can replace H1 with another strip H ′

1 as long as they agree, for each
configuration, on the value of a MWSS.

The strip H ′
1 will be fairly trivial: it will be either the strip H ′

1 = (C1, {c1}) or the strip
H ′

1 = (C3, {{c1, c3}, {c2, c3}}), where we denote by Ck the complete graph on k ≥ 1 vertices labeled
c1, ..., ck (hence, C1 is the graph made of a single vertex, while C3 is a triangle). However, because
the composition, and thus the adjacencies between G \V (G1) and G1, are slightly different if: (i) H1

is a 1-strip; (ii) H1 is a 2-strip and its extremities are in the same class of the partition P ; or (iii)
H1 is a 2-strip and its extremities are in different classes of the partition P , we need to distinguish
those cases. In each case, we define w′(v) = w(v) for v /∈ V (G1).

— In case (i), i.e., when A1 = {A1} and there exists P ∈ P : A1 ∈ P , we define: H ′
1 = (C1, {c1});

δ1 = αw(G1 \ A1); w′(c1) = αw(G1) − δ1; P ′ := (P \ P) ∪ (P ∪ {c1} \ A1).
— In case (ii), i.e., when A1 = {A1, A2} and there exists P ∈ P : A1, A2 ⊆ P , we define: H ′

1 =
(C1, {c1}); δ1 = αw(G1 \ (A1 ∪ A2)); w′(c1) = max{αw(G1 \ A1), αw(G1 \ A2), αw(G1 \ A1∆A2)} − δ1;
P ′ := (P \ P) ∪ (P ∪ {c1} \ {A1, A2}).

— In case (iii), i.e., when A1 = {A1, A2} and there exist P1 6= P2 ∈ P : Ai ∈ Pi i = 1, 2), we
define: H ′

1 = (C3, {{c1, c3}, {c2, c3}}); δ1 = αw(G1 \ (A1 ∪ A2)); w′(c1) = αw(G1 \ A2) − δ1, w′(c2) =
αw(G1\A1)−δ1 and w′(c3) = αw(G1)−δ1; P ′ := (P\(P1∪P2))∪((P1\A1)∪{c1, c3})∪((P2\A2)∪{c2, c3}).

The next lemma follows easily from the above discussion.

LEMMA 2.8. Let G be the composition of k strips H1 = (G1,A1), . . . , Hk = (Gk,Ak), with respect
to a partition P and let w : V (G) 7→ R. Let G′ be the composition of H ′

1, H2, . . . , Hk with respect to
the partition P ′ and w′ : V (G′) 7→ R, with H ′

1, P ′ and w′ defined above. Then αw(G) − δ1 = αw′(G′).
Moreover any MWSS of G′ (with respect to w′) can be converted into a MWSS of G (with respect to w) if
the following stable sets are known: a MWSS of G1; a MWSS of G1 not intersecting A, for each A ∈ A1;
a MWSS of G1 not intersecting

⋃
A∈A1 A; a MWSS of G1 not intersecting A1∆A2 (this one is required

only if A1 = {A1, A2} and A1, A2 are in the same class of P).

PROOF. (i) We begin with showing that αw(G) ≤ δ1 + αw′(G′). Let S be a MWSS of G. First
suppose that S picks a vertex in A1. Then S ∩ V (G1) is a mwss in G1 (otherwise we would swap
with a better one in G1). Also S is not picking any vertex belonging to an extremity in P other
than A1, and therefore S′ = (S \ V (G1)) ∪ {c1} is a stable set of G′. Therefore, αw(G) = w(S) =
w′(S′)−w′(c1) + w(S ∩ V (G1)) = w′(S′)−w′(c1) + αw(G1) = w′(S′) + δ1 ≤ αw′(G′) + δ1. Suppose now
that S does not pick any vertex from A1. Then S ∩ V (G1) is a mwss in G1 \ A1, and S \ V (G1) is a
stable set of G′. Therefore, αw(G) = w(S) = w(S ∩ V (G1)) + w(S \ V (G1)) ≤ δ1 + αw′(G′).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:7

We now show that αw(G) ≥ δ1 + αw′(G′). Let S′ be a MWSS of G′. First suppose that S′ picks c1.
In this case, for any stable set S of G1, (S′ \ c1) ∪ S is a stable set of G. Therefore, if in particular
we choose S as a mwss of G1, αw(G) ≥ w((S′ \ c1) ∪ S) = w′(S′) − w′(c1) + αw(G1) = αw′(G′) + δ1.
Now suppose that S′ does not pick c1. In this case, for any stable set S of G1 \ A1, S′ ∪ S is a
stable set of G. Therefore, if in particular we choose S as a mwss of G1 \ A1, αw(G) ≥ w(S′ ∪ S) =
w′(S′) + αw(G1 \ A1) = αw′(G′) + δ1.

Therefore, αw(G) = δ1 + αw′(G′). Moreover, if S′ is a MWSS of G′, we may derive from it a MWSS

of G, as soon as we are given: a MWSS of G1; a MWSS of G1 not intersecting A1.

(ii). This case easily reduces to the previous one. In fact, let G
1

be the graph obtained from G1

making A1 complete to A2, H1 be the 1-strip (G
1
, A1 ∪ A2), and finally P be the partition obtained

from P by replacing P with P ∪ {A1 ∪ A2} \ {A1, A2}. Then G is the composition of H1, H2, . . . , Hk

with respect to the partition P. Now the statement follows from the previous case, as soon as we

observe that αw(G
1
) = max{αw(G1 \ A1), αw(G1 \ A2), αw(G1 \ A1∆A2)} and αw(G

1 \ (A1 ∪ A2)) =
αw(G1 \ (A1 ∪ A2)).

(iii). Let S be a MWSS of G. First suppose that S intersects both A1 and A2. Then S ∩ V (G1)
is a MWSS in G1. Also S′ = (S \ V (G1)) ∪ {c3} is a stable set of G′. Therefore, αw(G) = w(S) =
w′(S′) − w′(c3) + w(S ∩ V (G1)) = w′(S′) − w′(c3) + αw(G1) = w′(S′) + δ1 ≤ αw′(G′) + δ1. Suppose
now that S picks a vertex in A1 but no vertex in A2. Then S ∩ V (G1) is a MWSS in G1 \ A2. Also
S′ = (S\V (G1))∪{c1} is a stable set of G′. Therefore, αw(G) = w(S) = w′(S′)−w′(c1)+w(S∩V (G1)) =
w′(S′)−w′(c1)+ αw(G1 \A2) = w′(S′)+ δ1 ≤ αw′(G′) + δ1. The case where S picks a vertex in A2 but
no vertex in A1 goes along the same lines. Finally suppose now that S does not pick any vertex from
A1 ∪A2. Then S ∩V (G1) is a MWSS in G1 \ (A1 ∪A2), while S \V (G1) is a stable set of G′. Therefore,
αw(G) = w(S) = w(S ∩ V (G1)) + w(S \ V (G1)) ≤ δ1 + αw′(G′).

Conversely, let S′ be a MWSS of G′. First suppose that S′ picks c3. In this case, for any stable set
S of G1, (S′ \ c3) ∪ S is a stable set of G. Therefore, if in particular we choose S as a MWSS of G1,
αw(G) ≥ w((S′\c3)∪S) = w′(S′)−w′(c3)+αw(G1) = αw′(G′)+δ1. Now suppose that S′ picks c1. In this
case, for any stable set S of G1\A2, (S′\c1)∪S is a stable set of G. Therefore, if in particular we choose
S as a MWSS of G1\A2, αw(G) ≥ w((S′\c1)∪S) = w′(S′)−w′(c1)+αw(G1\A2) = αw′(G′)+δ1. The case
where S′ picks c2 goes along the same lines. Finally suppose that S′ does not pick any vertex from C3.
In this case, for any stable set S of G1 \(A1∪A2), S′∪S is a stable set of G. Therefore, if in particular
we choose S as a MWSS of G1\(A1∪A2), αw(G) ≥ w(S′∪S) = w′(S′)+αw(G1\(A1∪A2)) = αw′(G′)+δ1.

Therefore, αw(G) = δ1 + αw′(G′). Moreover, if S′ is a MWSS of G, we may derive from it a MWSS

of G, as soon as we are given: a MWSS of G1; a MWSS of G1 not intersecting A1; a MWSS of G1 not
intersecting A2; a MWSS of G1 not intersecting A1 ∪A2 and a MWSS of G1 not intersecting A1∆A2 in
case (ii).

Trivially, we can apply the above procedure iteratively to each strip Hi. The problem of finding
a MWSS on G reduces therefore to the same problem on the graph G∗ that is the composition of
H ′

1, . . . , H
′
k with respect to a suitable partition P∗. The following lemma shows some key properties

of G∗.

COROLLARY 2.9. G∗ is a line graph and in time O(k) we can build a root graph G̃ with O(k)
vertices and edges.

PROOF. It is trivial to see that the strips H ′
i, i = 1, ..., k, are line strips, according to Definition

2.5, and therefore it follows from Lemma 2.7 that G∗ is a line graph. (Note also that by construction
G∗ has at most 3k vertices). Moreover, the proof of the same lemma, together with Lemma 2.1
(which is constructive), suggests how to build a root graph for G∗ with O(k) vertices and edges in
O(k)-time : we skip the details.

Since the number k of strips is bounded by O(|V (G)|), it follows that we have reduced, provided
we can efficiently compute the weights w′ for the vertices of each strip H ′

i, the maximum weighted

stable set problem on G to a weighted matching problem on the graph G̃, that has O(|V (G)|) vertices
and edges. This latter problem can be solved in time O(|V (G)|2 log |V (G)|) by [Gabow 1990]. Also
note that the computation of the weights w′ for the vertices of some strip H ′

i requires the solution of
some MWSS problems on Gi, where, eventually, the weight of some vertex is set to 0. Thus, we have
proved the following:

THEOREM 2.10. [Oriolo et al. 2008]. The maximum weighted stable set problem on a
graph G, that is the composition of some set of strips (G1,A1), . . . , (Gk,Ak), can be solved in
O(|V (G)|2 log |V (G)| +

∑
i=1,...,k pi(|V (Gi)|))-time, if each Gi belongs to some class of graphs, where

the same problem can be solved in time O(pi(|V (Gi)|)).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Y. Faenza et al.

3. ARTICULATION CLIQUES

Most claw-free graphs admit a strip decomposition, and we will later show how to find such a
decomposition. Articulation cliques are the main tool for this decomposition, as we will show that
every claw-free graph G, that has some articulation clique, admits a strip decomposition where each
partition-clique is indeed an articulation clique of G. We therefore devote this section to the study
of articulation cliques. Their definition requires, however, a few results and definitions.

Let G(V, E) be a claw-free graph. A vertex v ∈ V such that N [v] can be covered by two maximal
cliques K1 and K2 (not necessarily different) is called regular, and it is called strongly regular when
this covering is unique: in this case, we also say that K1 and K2 are crucial (for v). A vertex that is
not regular is called irregular. Note that each irregular vertex of G is the center of an odd k-anti-
wheel with k ≥ 5, and that G is quasi-line if and only every vertex v ∈ V is regular. The following
classical lemma of Fouquet shows that 5-wheels are the only “obstruction” to regularity when α(G)
is large enough.

LEMMA 3.1. [Fouquet 1993] If G is a connected claw-free graph G with α(G) ≥ 3, then each vertex
is either regular or is the center of a 5-wheel. Moreover, if α(G) ≥ 4, then G has no odd k-anti-wheel,
with k > 5.

The following lemma goes along the same lines of Corollary 4 in [Kennedy and King 2011]. It
makes use of the following fact, observed by Kloks, Kratsch and Müller [2000].

FACT 3.2. In a claw-free graph every vertex has at most 2
√
|E| neighbors. In particular every

clique has size at most
√
|E|.

LEMMA 3.3. Let G(V, E) be a claw-free graph.

(i) For each vertex v ∈ V , in time O(|E|) we may recognize if v is regular, strongly regular (and, in
this case, find the cliques that are crucial for v and store them sorted with respect to any given linear
order on V), or irregular (and, in this case, find an odd k-anti-wheel centered in v, k ≥ 5).

(ii) In time O(|V ||E|) we may either recognize that G is quasi-line, or that α(G) ≤ 3, or build, for
each irregular vertex a, a 5-wheel W (a) centered in a.

PROOF. (i) For each v ∈ V , consider the graph H = G[N(v) \ U(v)]. Because of Fact 3.2, H can be
build in time O(|E|) and has at most |E| edges. Then v is regular if H is bipartite and is irregular
otherwise. Bipartiteness can be checked in time O(|E|) by adapting breadth first search. Also, it can
be modified as to return an odd chordless cycle. If H is bipartite, then v is strongly regular if and
only H is connected: in this case, S1 ∪ U [v] and S2 ∪ U [v] are the crucial cliques for v, where S1 and
S2 are the classes of the unique bi-coloring of H . Once one has obtained S1, S2, if we are given a
linear order on the set V , we can sort them in O(|E|)-time using Fact 3.2. If H is not bipartite, then
the vertices of any odd chordless cycle of H together with v induce an odd k-anti-wheel on G, with
k ≥ 5, since H has no triangles. The statement trivially follows.

(ii) It follows from (i) that in time O(|V ||E|) we either recognize that G is quasi-line or build, for
each irregular vertex a, an odd k-anti-wheel W (a) centered in a, k ≥ 5. If there exists an irregular
vertex a such that W (a) is a long odd anti-wheel, then α(G) ≤ 3 by Lemma 3.1.

Following Lemma 3.3, in the rest of this section we assume that for each vertex, the crucial cliques
are stored sorted with respect to some given ordering on V . The following technical lemmas give
some sufficient conditions to recognize strongly regular vertices.

LEMMA 3.4. Let G be a claw-free graph, K be a maximal clique of G and v ∈ K. If either v is
simplicial, or N(v) \ K is anti-complete to some vertex in K, then v is strongly regular and K is
crucial for v.

PROOF. The statement is trivial if v is simplicial. So suppose that N(v) \ K is non-empty and
there exists a vertex w ∈ K such that N(v) \ K is anti-complete to w. This implies that N(v) \ K is
a clique, otherwise any stable set of size two in N(v) \K, say {t, z}, would cause the claw (v; w, t, z).
Thus, v is regular; we now show that v is strongly regular and K is crucial for v. In order to prove
this, it is enough to show that, if K1, K2 are two maximal cliques covering N [v], then either K = K1

or K = K2. So let K1, K2 (K1 6= K2 since v is not simplicial) be two maximal cliques covering N [v];
trivially, the set U [v] satisfies U [v] = K1∩K2. We may assume without loss of generality that w ∈ K1

and N(v)\K ⊆ K2 \K1. Let u ∈ K \U [v]: then, there exists z ∈ N(v)\K : uz 6∈ E. As N(v)\K ⊆ K2,
it follows that u ∈ K1. Therefore, K \ U [v] ⊆ K1 and thus K ⊆ K1. By maximality, K = K1.

LEMMA 3.5. Let G be a claw-free graph and v a vertex of G. If there exist non-empty vertex
disjoint cliques X1, X2, Y1, Y2 such that X1 ∪ X2 ∪ Y1 ∪ Y2 = N(v) \ U(v), X1 is complete to X2, Y1 is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:9

complete to Y2, X1 is anti-complete to Y2, X2 is anti-complete to Y1 and X1 is not complete to Y1, then
v is strongly regular and X1 ∪ X2 ∪ U [v] and Y1 ∪ Y2 ∪ U [v] are crucial for v.

PROOF. By hypothesis, v is regular. Let Q1 and Q2 two maximal cliques covering N [v]. We can
assume without loss of generality that X1 ⊆ Q1 and Y2 ⊆ Q2. There exists y ∈ Y1 that is not
complete to X1; therefore y ∈ Q2, and then X2 ⊆ Q1 and Y1 ⊆ Q2. So X1∪X2 ⊆ Q1 and Y1 ∪Y2 ⊆ Q2.
But then, trivially, Q1 = X1 ∪ X2 ∪ U [v] and Q2 = Y1 ∪ Y2 ∪ U [v].

Definition 3.6. A maximal clique K of a claw-free graph G is an articulation clique if, for each
v ∈ K, K is crucial for v. We denote by K(G) the family of all articulation cliques of G.

Note that, by definition, each vertex of an articulation clique is strongly regular. However, the
converse does not hold, i.e., it is not true that a maximal clique made of strongly regular vertices
is an articulation clique. Indeed, consider vertex v complete to a path {a1, a2, a3, a4} of length three.
The clique induced by {v, a2, a3} is not an articulation clique, though it is maximal and each vertex
is strongly regular.

We observe a simple fact that will be extensively used in the following.

FACT 3.7. Let G be a claw-free graph and let K ∈ K(G) be an articulation clique of G. For each
v ∈ K, N(v) \ K is a clique.

LEMMA 3.8. Let G(V, E) be a claw-free graph. G has at most 2n articulation cliques and we can
list them all in time O(|V ||E|).

PROOF. It follows from Lemma 3.3 that we may build in time O(|V ||E|) the set of strongly regular
vertices of G and, for each vertex v ∈ V , its crucial cliques (if any). Remember we can assume the
list of vertices in each crucial clique are sorted. Note that G has at most 2n crucial cliques (i.e.,
cliques that are crucial for some strongly regular vertex), as every vertex is contained in at most
two crucial cliques. Then, building upon Fact 3.2, we may list all articulation cliques of G in time
O(|V ||E|) by simply checking for every crucial clique K that every vertex v in the clique (those are

at most ≤
√
|E| by Fact 3.2) has K as a crucial clique (comparing K with the two crucial cliques of

v takes O(
√

|E|) since all cliques are sorted).

In the following, we characterize two classes of maximal cliques that are articulation cliques:
cliques of claw-free graphs with a simplicial vertex; net cliques of quasi-line graphs (cf. Definition
1.6). (There are articulation cliques that do not belong to these classes, though; however, a com-
plete characterization of articulation cliques in claw-free/quasi-line graphs is not necessary for the
following.)

LEMMA 3.9. Let G(V, E) be a claw-free graph and u a simplicial vertex of G. Then N [u] is an
articulation clique.

PROOF. Let K = N [u]. From Lemma 3.4, each simplicial vertex of K is strongly regular and K is
crucial for it. Consider now a vertex v ∈ K that is not simplicial, i.e., such that N(v) \ K 6= ∅. Then
N(v) \ K is anti-complete to u and it follows again from Lemma 3.4 that v is strongly regular and
K is crucial for it. The statement follows.

LEMMA 3.10. In a quasi-line graph every net clique is an articulation clique.

PROOF. Let G be quasi-line, {v1, v2, v3; s1, s2, s3} a net of G and K a maximal clique such that
{v1, v2, v3} ⊆ K. For i ∈ [3], let Ki be the set of vertices from K that are adjacent to si (Ki 6= ∅ since
vi ∈ Ki), and K4 := K \ (K1 ∪K2 ∪K3). Note that {K1, K2, K3, K4} is a partition of K, since a vertex
v ∈ K that is adjacent to two vertices from s1, s2, s3, say s1 and s2, implies the claw (v; s1, s2, v3). We
now show that any vertex v ∈ K is strongly regular and K is crucial for v.

First, suppose v ∈ K1. Let {Q1, Q2} be a pair of maximal cliques such that N [v] = Q1 ∪Q2 (such a
pair exists, since the graph is quasi-line). Assume without loss of generality that s1 ∈ Q1, it follows
that K \ K1 ⊆ Q2. We now show that every vertex z ∈ N(v) \ K is not complete to K \ K1. Suppose
the contrary, i.e., there exists z ∈ N(v) \ K that is complete to K \ K1. Since K is maximal, there
exists w ∈ K1, w 6= v, such that wz 6∈ E. Since z is adjacent to v, it cannot be adjacent to both s2

and s3 (otherwise there would be the claw (z; s2, s3, v)). Assume without loss of generality z is not
linked to s3. Let z3 be a vertex in K3. Then z3z ∈ E, as z is complete to K \ K1. Now since ws3 /∈ E,
(z3; s3, w, z) is a claw, a contradiction. Therefore, every vertex in z ∈ N(v) \ K is not complete to
K \ K1 and so it must belong to Q1. It follows that Q1 = (N(v) \ K) ∪ U [v] and Q2 = K form the
unique pair of maximal cliques covering N [v], thus v is strongly regular and K is crucial for v. The
same argument holds for any vertex v ∈ K2 or v ∈ K3.

Now suppose that v ∈ K4. If v is a simplicial vertex, then from Lemma 3.4 v is strongly regular
and K is crucial for v. Hence suppose that there exists w 6∈ K such that wv ∈ E. Observe that w

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Y. Faenza et al.

is adjacent to at most one vertex of {s1, s2, s3}: if the contrary, assume without loss of generality
s1, s2 ∈ N(w), there would be the claw (w; v, s1, s2). Hence there exists a stable set of size three in
{w, s1, s2, s3} containing w, say {w, s1, s2}. Then (v1, v2, v; s1, s2, w) is another net, and with respect
to this net, we are back to the previous case.

3.1. The maximum weighted stable set problem in {claw, net }-free graphs

In this section, we show that we can solve the maximum weighted stable set problem in a graph G
that has no articulation cliques, and therefore is {claw, net}-free, in time O(|V ||E|). Note that the
algorithm given by Pulleyblank and Shepherd in [1993] for solving the MWSS in distance claw-free
graphs can be used to solve the above problem in time O(|V (G)|4) (a graph is distance claw-free,
if, for each vertex v ∈ V (G) and j, α(Nj(v)) ≤ 2). Also Brandstadt and Dragan [2003] show that
a maximum cardinality stable set in a {claw, net}-free graph G can be found in time O(|V (G)|3).
In the following, we essentially build upon these results to get an O(|V ||E|)-time algorithm for the
weighted case.

We start with a definition. Recall (cf. Definition 1.5) that a vertex v of a connected graph G is
distance simplicial if, for every j, α(Nj(v)) ≤ 1.

Definition 3.11. A vertex v of a connected graph G is almost distance-simplicial if α(Nj(v)) ≤ 1
for every j ≥ 2, and α(N(v) ∪N2(v)) ≤ 2. A graph is almost distance-simplicial if there exists v that
is distance simplicial.

The next lemma builds upon a construction and an algorithm from Pulleyblank and Shepherd
[1993] for distance-claw-free graphs.

LEMMA 3.12. Let G(V, E) be a connected graph and z an almost distance-simplicial vertex of G.
The maximum weighted stable set problem in G can be solved in time O(|V |2). If G is also claw-free,
the complexity reduces to O(|E|).

PROOF. We are given a graph G(V, E) and a weight function w : V (G) 7→ R. Let p ∈ N be the
minimum number i such that Ni(z) = ∅. We write N0(z) = {z} and denote by Si, i = 0, ..., p − 1 the
family of all stable sets in G[Ni(z)] (note that the empty set is included in each Si).

We now associate to G an auxiliary directed graph D(V (D), A(D)). The set V (D) consists of
{vi

S : S ∈ Si, i = 0, ..., p}, together with two special nodes u∗, v∗. A(D) is made of the following
arcs: (u∗, v0

{z}) and (u∗, v0
∅); for each i = 0, ..., p − 2 and S stable set of G[Ni(z) ∪ Ni+1(z)], the arc

(vi
S∩Ni(z), v

i+1
S∩Ni+1(z)); for each S ∈ Sp−1, the arc (vp−1

S , v∗). We assign weights w′ to the arcs of D as

follows: for each arc a = (x, v∗), w′
a = 0; for each other arc a = (x, vi

S), w′
a =

∑
y∈S wy. The MWSS

problem in G is equivalent to the longest directed (u∗, v∗)-path in the acyclic graph D and can thus
be solved in time O(|A(D)|), assuming that D is stored via adjacency lists (see e.g. [Ahuja et al.
1993]).

We now bound |A(D)| and the time complexity to build the auxiliary graph. Let ni = |Ni(z)| for
i = 1, ..., p−1. The auxiliary graph has O((n1)

2+|V |) vertices. Note that O((n1)
2+|V |) also suffices to

determine those vertices. In order to build the auxiliary graph, we are left with computing its arcs;
this requires: for i = 1, ..., p− 2, checking all pairs of vertices (vi

S , vi+1
T) where S is a stable set of size

one in Si and T is a stable set of size one in Si+1 (and, in case, adding the corresponding arc); for i =
0, ..., p− 1, adding for all T ∈ Si+1 the arc between vi

∅ and vi+1
T and for all S ∈ Si, the arc between vi

S

and vi+1
∅ ; adding two arcs (u∗, v0

{z}) and (u∗, v0
∅); for each S ∈ Sp−1, adding the arc (vp−1

S , v∗). Hence

building the graph and storing it via adjacency lists requires O((n1)
2 + |V |+n1 ·n2 + ...+np−2 ·np−1)-

time. But O(n1 · n2 + ... + np−2 · np−1) is bounded by O((max{n1, n2})2 + ... + (max{np−2, np−1})2) ≤
O(2(n1)

2 + ... + 2(np−1)
2). Also, n1 ≤ |V | (n1 ≤

√
|E| for claw-free graphs by Fact 3.2). Moreover,

because for all i ≥ 2, Ni(z) is a clique of G with O((ni)
2) edges, we have O(|E|) ≥ O(

∑
i≥2(ni)

2). It

follows that the auxiliary graph can be built and stored via adjacency lists in time O(|V |2) (O(|E|)
for claw-free graphs) and |A(D)| = O(|V |2) (|A(D)| = O(|E|) for claw-free graphs). The statement
follows.

We need a few more results from the literature.

Definition 3.13. A triple {x, y, z} of vertices of a graph G is an asteroidal triple (AT) if for every
two of these vertices there is a path between them avoiding the closed neighborhood of the third. A
graph G is called asteroidal triple-free (AT-free) if it has no asteroidal triple.

Brandstadt and Dragan [2003] proved the following:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:11

LEMMA 3.14. For every vertex v in a {claw,net}-free graph G(V, E), G[V \N [v]] is {claw,AT}-free.

Now using the celebrated 2LexBFS algorithm, Hempel and Krastch [2002] proved the additional
following result (Lemma 6 in [Hemper and Kratsch 2002]):

LEMMA 3.15. Given a {claw,AT}-free graph G(V, E), one can find in O(|E|) an almost distance
simplicial vertex in G.

THEOREM 3.16. The maximum weighted stable set problem on a graph G(V, E) that is
{claw,net}-free can be solved in time O(|V ||E|).

PROOF. For each v ∈ V we compute the MWSS picking v by solving the MWSS on G(V \ N [v]).
This can be done in O(|E|) time, because of Lemma 3.14, Lemma 3.15 and Lemma 3.12. We choose
the best stable set over the |V | choices: the results follows.

4. AN ALGORITHMIC DECOMPOSITION OF QUASI-LINE GRAPHS

In this section, we provide an algorithmic decomposition of quasi-line graphs (we will deal with
claw-free graphs in the next section). We will show that most quasi-line graphs admit a strip de-
composition where each partition-clique is an articulation clique of G. In order to find this decom-
position, we therefore need to reverse the operation of composition and define a suitable operation
of “ungluing” of articulation cliques.

Let K be an articulation clique of a quasi-line graph G. The ungluing of K requires a partition
of the vertices of K into suitable classes. These classes are the equivalence classes defined by an
equivalence relation R on the vertices of K. Call bound a vertex of K that belongs to two distinct
articulation cliques of G (note that no vertex belongs to more than two articulation cliques). Then,
for u, v ∈ K, uRv if and only if:

(i). either u = v;
(ii). or u 6= v, both u and v are bound and they belong to the same articulation cliques (note that
in this case u and v are true twins);
(iii). or u 6= v, u and v are neither simplicial nor bound and (N(v) \ K) ∪ (N(u) \ K) is a clique.

We claim that R define an equivalence relation on the vertices of K. In fact, while symmetry and
reflexivity of R are by definition, transitivity follows either from definition or from the next lemma.

LEMMA 4.1. Let G(V, E) be a quasi-line graph, K an articulation clique with three distinct non-
simplicial vertices u, v, z ∈ K. If (N(u) \K)∪ (N(z) \K) and (N(v) \K)∪ (N(z) \K) are cliques, then
also (N(u) \ K) ∪ (N(v) \ K) is a clique.

PROOF. In the following, for y ∈ K, we let Ñ(y) = N(y) \ K. Since u, v, z are non simplicial,

it follows that Ñ(u), Ñ(v) and Ñ(z) are non-empty. Now suppose the statement is false; therefore

there exist w1 and w2 ∈ Ñ(u) ∪ Ñ(v) that are non-adjacent. Since Ñ(u) and Ñ(v) are cliques, it

follows that without loss of generality w1 ∈ Ñ(u) \ Ñ(v) and w2 ∈ Ñ(v) \ Ñ(u). Furthermore, note

that w1, w2 /∈ Ñ(z), since this would contradict the hypothesis. Then pick any vertex t from Ñ(z):
tz, tw1, tw2 ∈ E, and w1z, w2z /∈ E hold; thus, (t; z, w1, w2) is a claw, a contradiction.

The above discussion shows that the following Definition 4.2 is consistent. We then skip the
straightforward proof of Lemma 4.3.

Definition 4.2. Let G be quasi-line and K an articulation clique of G. We denote by Q(K) the
family of the equivalence classes defined by R and call each class of Q(K) a spike of K.

LEMMA 4.3. Let G(V, E) be a quasi-line graph, K an articulation clique of G and Q a spike of
K. Then:

— either Q = {v}, for some simplicial vertex v of G. In this case, N [Q] = K and the spike is called
simplicial;

— or Q = U [v] for some bound vertex v of G. In this case, the vertices in Q are true twins, the
unique pair of maximal clique covering N [Q] is {K, (N(Q) \ K) ∪ Q}, where (N(Q) \ K) ∪ Q is also
an articulation clique of G, and the spike is called a bound spike;

— or Q is made of a subset of non-bound and non-simplicial vertices of K. In this case, for each
v ∈ Q, the unique pair of maximal clique covering N [v] is {K, (N(v) \ K) ∪ U [v]}, and the spike is
called non-trivial.

Before proceeding further, it is convenient to shed some light on the intersections between spikes
from different articulation cliques. We will denote by Q(K(G)) the disjoint union of all spikes of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Y. Faenza et al.

articulation cliques of G: note that Q(K(G)) is in general a multi-family. The following lemma is
straightforward.

LEMMA 4.4. Let Q1 and Q2 be spikes of different articulation cliques. Then either Q1 ∩ Q2 = ∅,
or Q1 and Q2 are bound spikes and Q1 = Q2.

We are ready to introduce the operation of ungluing of articulation cliques in quasi-line graphs.

Definition 4.5. Let G be a quasi-line graph. The ungluing of the cliques in K(G) consists of
removing, for each articulation clique K ∈ K(G), the edges between different spikes of Q(K). We
denote the resulting graph by G|K(G).

LEMMA 4.6. Let G(V, E) be a quasi-line graph. We can build the graph G|K(G) and the family

Q(K(G)) in time O(|V ||E|).
PROOF.
Let n = |V | and m = |E|. We can assume without loss of generality that G is connected, thus

m = Ω(n). We know from Lemma 3.8 that |K(G)| ≤ 2n and that we can list all cliques in K(G) in

time O(nm). For an articulation clique K and a vertex u ∈ K, we let Ñ(u) := N(u) \ K. Given a non
empty set S ⊂ V , we denote by δ(S) := {(u, v) ∈ E : u ∈ S, v ∈ V \ S}. We start by giving a bound on
the time complexity needed to build Q(K) for a given articulation clique K.

So let K be an articulation clique of G. For each u ∈ K, we can build the set Ñ(u), and check
whether u is simplicial, in time O(n). Note that O(n) also suffices to check whether u is bound (in
fact u is bound if and only if it belongs to another articulation clique, and |K(G)| ≤ 2n). Therefore,
in time O(|K|n) we can “pre-process” the clique, as to find its simplicial and bound vertices, as well
the spikes defined by those vertices. We now compute the other spikes of K, i.e., the spikes with
non-simplicial and non-bound vertices. In the following, we refer to the subset of non-simplicial and

non-bound vertices of K as K. We can also build Ñ(K) :=
⋃

u∈K Ñ(u) in time O(|K|n). By definition,

two vertices u, v ∈ K belong to the same spike if and only if Ñ(u) ∪ Ñ(v) is a clique.
In order to compute the spikes for the vertices in K, we construct a bipartite graph G′(K ∪

Ñ(K), E′) such that u ∈ K and w ∈ Ñ(K) are adjacent if and only if either w ∈ Ñ(u), or w is complete

to Ñ(u). Note that each graph G′ can be constructed by adding, for each u ∈ K, the edges between

u and all w ∈ Ñ(u), and by checking for each u ∈ K, w ∈ Ñ(K) and z ∈ Ñ(u) if wz ∈ E. Since

the sets Ñ(K) and Ñ(u) for each u ∈ K are available, it follows that G′ can be constructed in time

O(
∑

u∈K

∑
w∈ eN(K)

∑
z∈ eN(u) 1) = O(

∑
u∈K

∑
z∈ eN(u) |Ñ(K)|) ≤ O(n · ∑u∈K

∑
z∈ eN(u) 1) = O(n|δ(K)|).

Hence, we can build Q(K) in time O(n|K| + n|δ(K)|) and consequently Q(K(G)) in O(n2 +
nm)−time, where we used the fact that

∑
K∈K(G) |K| = O(n) and

∑
K∈K(G) |δ(K)| ≤ 4m since

any vertex is in at most 2 articulation cliques and thus any edge belongs to at most 4 sets from
{δ(K) : K ∈ K(G)}. The statement follows.

The following lemma, whose long proof is postponed to the appendix, shows several properties of
the graph G|K(G), that are crucial for the decomposition algorithm.

LEMMA 4.7. Let G be a connected quasi-line graph with K(G) 6= ∅ and let C be the set of connected
component of G|K(G). Then:

(i) G|K(G) is quasi-line.

(ii) If Q ∈ Q(K(G)), then Q entirely belongs to some connected component C ∈ C, and C is distance
simplicial with respect to Q. Moreover, if Q is either simplicial or bound, then V (C) = V (Q).

(iii) If Q1, Q2 ∈ Q(K(G)) are non-trivial spikes belonging to a same connected component C ∈ C,
then there exists j2 such that Q2 ⊆ Nj2−1(Q1)∪Nj2(Q1) and Nj2+1(Q1) = ∅, where Nj(Q1) is the j−th
neighborhood of Q1 in C (and, analogously, there exists j1 such that Q1 ⊆ Nj1−1(Q2) ∪ Nj1(Q2) and
Nj1+1(Q2) = ∅).

(iv) For each C ∈ C, there are either one or two spikes from Q(K(G)) that belong to C. Therefore, if
we let A(C) be the multi-family of these spikes, then (C,A(C)) is a strip.

(v) G is the composition of the strips {(C,A(C)) : C ∈ C} with respect to the partition P that puts
two extremities in the same class if and only if they are spikes from a same articulation clique of G.

We are now ready to give our algorithmic decomposition theorem for quasi-line graphs.

THEOREM 4.8. Let G(V, E) be a connected quasi-line graph. In time O(|V ||E|) Algorithm 1:

(j) either recognizes that G has no articulation cliques and therefore is net-free;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:13

(jj) or provides a decomposition of G into k ≤ |V | quasi-line strips (G1,A1), . . . , (Gk,Ak), with
respect to a partition P such that the partition-cliques are all articulation cliques of G. Moreover, for
each strip (Gi,Ai), each extremity A ∈ Ai is a spike from some articulation clique of G and the graph
Gi is distance simplicial with respect to A.

In particular, if Ai = {A1, A2}, then:
— either A1 = A2 = V (Gi);
— or A1 ∩ A2 = ∅ and there exists j2 such that A2 ⊆ Nj2−1(A1) ∪ Nj2(A1) and Nj2+1(A1) = ∅,

where Nj(A1) is the j−th neighborhood of A1 in Gi (and, analogously, there exists j1 such that
A1 ⊆ Nj1−1(A2) ∪ Nj1(A2) and Nj1+1(A2) = ∅).

ALGORITHM 1: Decomposition of quasi-line graphs

Require: A connected quasi-line graph G.
Ensure: The algorithm either recognizes that G has no articulation cliques and therefore is net-free, or

returns a strip decomposition of G as to satisfy part (jj) of Theorem 4.8.

1: Find the family K(G) of all articulation cliques of G. If K is empty, then G has no net cliques and then it is
net-free, stop.

2: Following Definition 4.5, unglue the articulation cliques in K(G) as to build the graph G|K(G).
3: Let C be the components of G|K(G). For each component C ∈ C, let A(C) be the family (possibly a

multi-family) of spikes in C.
4: Return the family of strips {(C,A(C)) : C ∈ C} and the partition P of

S

C∈C
A(C) that puts two

extremities in the same class if and only if they are spikes from a same articulation clique.

Proof of Theorem 4.8. We first show that the algorithm is correct. If K(G) = ∅, it follows from
Lemma 3.10 that G is net-free. Otherwise, we rely on Lemma 4.7, and it is easy to check that (jj)
holds, following statements (i) − (v) in Lemma 4.7. In particular, as from (iv) each component of
G|K(G) defines a strip, there are at most |V | strips. We now move to complexity issues. We can find all
articulation cliques of G in time O(|V ||E|) thanks to Lemma 3.8. Moreover, we can build the graph
G|K(G) and the family Q(K(G)) in time O(|V ||E|), thanks to Lemma 4.6; this also immediately gives
the partition P . Finally, we can easily compute C in time O(|E|) and the sets A(C) for each C ∈ C
in time O(|V |2) (we have at most |V | spikes and |V | components and for each spike it is enough to
check that one of its vertices is in a given component or not) .

See Figure 1 for the application of Algorithm 1 to an example.

4.1. The maximum weighted stable set problem in quasi-line g raphs

We are almost ready to present an O(|V |(|E| + |V | log |V |))-time algorithm for the weighted stable
set problem on a quasi-line graph G. In fact, it follows from Theorem 4.8 and Theorem 2.10 that, in
order to get an algorithm for the MWSS problem on a quasi-line graph G, we are left with showing
how to find a MWSS in a graph H that is distance simplicial with respect to some clique. The next
lemma shows that this can be done in time O(|E(H)|). We skip the proof, as it goes along the same
lines of that of Lemma 3.12.

LEMMA 4.9. Let H be a connected graph and K a clique of H such that H is distance simplicial
with respect to K. The maximum weighted stable set problem in H can be solved in time O(|V (H)|2).
If G is also claw-free, the complexity reduces to O(|E(H)|).

The algorithm to solve the MWSS problem in a quasi-line graph is therefore the following:

ALGORITHM 2: Solution of the MWSS in quasi-line graphs

Require: A connected quasi-line graph G(V, E) and a function w : V 7→ R.
Ensure: The algorithm finds a maximum weighted stable set in G with respect to w in

O(|V |(|E| + |V | log |V |))-time.

1: Use Algorithm 1 to either detect in O(|V ||E|)-time that G is {claw,net}-free or to provide in the same time
a decomposition of G that obeys Theorem 4.8.

2: If G is {claw,net}-free, then use Theorem 3.16 to solve the problem in O(|V ||E|) time.
3: Else, G is the composition of the k strips H1, ..., Hk. For each strip, a MWSS can be found in time

O(|E(Hi)|), by Lemma 4.9. Then, by Theorem 2.10, a MWSS in G can be computed in time O(|V |2 log |V |).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Y. Faenza et al.

Fig. 1. On the left: A quasi-line graph G and its articulation cliques (dashed, in gray). On the right: the decomposition
of G into distance simplicial strips obtained using Algorithm 1: the articulation cliques of G are now the partition-cliques
of its decomposition. Recall that, for each strip (C,A(C)), at most two different partition-cliques K1, K2 have non-empty
intersection with V (C). Thus, K1 ∩ V (C) and K2 ∩ V (C) (if K2 exists) form the extremities from the set A(C).

5. AN ALGORITHMIC DECOMPOSITION OF CLAW-FREE GRAPHS

Let G(V, E) be a claw-free graph. We know from Lemma 3.3 that in time O(|V ||E|) we may recognize
that G is quasi-line (and, in this case, we can rely on Theorem 4.8 to get a finer decomposition), or
that G is non-quasi-line and α(G) ≤ 3, or provide, for each irregular vertex a ∈ V , a 5-wheel W (a)
centered in a.

The main result of this section are Algorithm 3 and Theorem 5.6 showing how to deal with the
latter case and produce a strip decomposition of G in strips that are distance simplicial and quasi-
line (i.e., the same strips we have in Theorem 4.8) or non-quasi-line and with small stability number.
However, the way we now build the strip decomposition is slightly different than for quasi-line
graphs. In fact, Algorithm 1 produces the strips altogether (in a way, simultaneously) from the
ungluing of the articulation cliques of G. Unfortunately, when dealing with claw-free graphs, the
ungluing operation may create claws and so we have to take a (short) detour. Algorithm 3 will first
iteratively find and suitably remove a family H of non-quasi-line strips of G, that we call hyper-
line strips, as to produce a quasi-line graph G|H; then it will proceed as Algorithm 1 and build a
strip decomposition (F ,P) of G|H. Finally, it will suitably “combine” the strips in F ∪ H and the
partition P to derive a strip decomposition of G. It turns out that the partition-cliques of this final
decomposition are, in general, a subset of the articulation cliques of G, i.e., possibly there are some
articulation cliques of G that we do not unglue.

We start with the crucial definition of hyper-line strips.

Definition 5.1. Let G(V, E) be a claw-free graph and (H,A) a strip that is either a 1-strip or a
2-strip with vertex disjoint extremities. We say that H is an hyper-line strip of G if:

— H is an induced subgraph of G, i.e., H = G[V (H)];
— the core C(H,A) of the strip (H,A) is anti-complete to V \ V (H);
— for each A ∈ A, A ∪ (N(A) \ V (H)) is an articulation clique of G

(NB : it is in particular a maximal clique).

Observe that, if (H,A) is an hyper-line strip of G, then G is the composition of the strips (H,A)
and (G \V (H),K(A)), with respect to the partition {{A, K(A)}, A ∈ A}. Here we let, for each A ∈ A,
K(A) = N(A) \ V (H) and K(A) := {K(A), A ∈ A}.

Definition 5.2. Let G(V, E) be a claw-free graph and let (H,A) be an hyper-line strip of G. We
denote by G|(H,A) the graph obtained from G by deleting the vertices in the core of the strip and, in
case (H,A) is a 2-strip, the edges between the extremities (if any), that is:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:15

— V (G|(H,A)) = V (G) \ C(H,A);
— E(G|(H,A)) = {uv ∈ E : u, v ∈ V (G|(H,A)) \ {uv : u ∈ A1, v ∈ A2, A1 6= A2 ∈ A}.

LEMMA 5.3. Let G be a claw-free graph and (H,A) an hyper-line strip of G. For each A ∈ A, let
K(A) = NG(A) \ V (H). Then:

(i) G|(H,A) is claw-free.

(ii) Let v be a vertex of G|(H,A).

(iia) If v ∈ A, with A ∈ A, then NG|(H,A)
[v] = A ∪ K(A) and v is simplicial in G|(H,A);

(iib) else, NG|(H,A)
[v] = NG[v]. Moreover, G|(H,A)[N(v)] = G[N(v)], unless A = {A1, A2} and v ∈

K(A1) ∩ K(A2).
(iii) Let v be a vertex of G|(H,A). Then v is regular/strongly regular/irregular in G|(H,A) if and only if

it is regular/strongly regular/irregular in G. In particular, if v is irregular and W is a 5-wheel of
G centered in v, then W is also a 5-wheel of G|(H,A), and vice versa.

(iv) If K is an articulation clique of G that does not take vertices from C(H,A), then K is also an
articulation clique of G|(H,A), and vice versa.

(v) If (H,A) is an hyper-line strip of G that is vertex disjoint from V (H), then (H,A) is also an hyper-
line strip of G|(H,A) that is vertex disjoint from V (H), and vice versa.

PROOF. (iia) and (iib) hold by construction and thus (ii) holds true. In particular, for any v ∈
G|(H,A), NG|(H,A)

[v] = NG[v] unless v ∈ A for A ∈ A or A = {A1, A2} and v ∈ K(A1) ∩ K(A2). Hence,

vertices not in those two configurations stay regular / strongly regular or irregular if they previously
were. Now, vertices of A for all A ∈ A are simplicial in G|(H,A) and thus strongly regular in G|(H,A)

(as in G). Hence the only obstruction to (iii) can come from a vertex v ∈ K(A1) ∩ K(A2) when
A = {A1, A2}. But in this case, v is a strongly regular vertex of G, as it belongs to the articulation
cliques A1∪K(A1) and A2∪K(A2). Since A1, A2 are vertex disjoint, removing adjacencies between A1

and A2 preserves regularity (the two cliques remains cliques) and strong regularity (if the partition
was unique before, it remains unique). This proves (iii) and also proves that the graph remains
claw-free, i.e., (i).

Consider now an articulation clique K of G that does not take vertices from C(H,A). There are
two cases: either K takes some vertex v from an extremity of A, or it does not. In the former case,
the only possibility is that K == A ∪ K(A), with A ∈ A (since A ∪ K(A) is an articulation clique of
G). But A∪K(A) is then an articulation clique of G|(H,A) by Lemma 3.9 as v is simplicial in G|(H,A).
Suppose now that K does not take any vertex from an extremity of A. Observe that in this case no
vertex v of K belongs to K(A1) ∩ K(A2), as otherwise v would belong to three articulation cliques
of G. But then it follows from (iib) that NG|(H,A)

[v] = NG[v] and G|(H,A)[N(v)] = G[N(v)], for each

v ∈ K. Therefore, K is also an articulation cliques of G|(H,A). Reversing the previous arguments is
straightforward, therefore statement (iv) holds.

Finally, let (H,A) be an hyper-line strip of G that is vertex disjoint from V (H). Observe that
V (H) ⊂ V (G|(H,A)) and, by statement (iib), H is an induced subgraph of G|(H,A) and the core of

(H,A) is anti-complete to V (G|(H,A)) \ V (H). For each A ∈ A, let K(A) = NG(A) \ V (H). Observe

that K(A) = NG|(H,A)
(A) \ V (H); it follows from statement (iv) that A ∪ (NG|(H,A)

(A) \ V (H)) is an

articulation clique of G|(H,A). Altogether, this shows that (H,A) is an hyper-line strip of G|(H,A).
Reversing the previous arguments is straightforward, therefore statement (v) holds.

As we discussed at the beginning of this section, we deal with a claw-free but not quasi-line graph
G(V, E) for which we are given, for each irregular vertex a ∈ V , a 5-wheel W (a) centered in a. In
order to get a strip decomposition of G we will iteratively find and remove (according to Definition
5.2) hyper-line strips as to end up with a quasi-line graph. The following crucial lemma, whose
proof is given in the Appendix, shows that in a claw-free graph with simplicial vertices it is always
possible to build an hyper-line strip “around” a 5-wheel.

LEMMA 5.4. Let G(V, E) be a connected claw-free graph and let a ∈ V be the center of a 5-wheel
W (a) of G. Then:

(i) either G has no simplicial vertices and α(G) ≤ 3;
(ii) or there exists an hyper-line strip (H,A) such that a ∈ C(H,A), no vertex of H is a simplicial vertex

of G and α(H) ≤ 3.

Moreover, if we are given the 5-wheel W (a) and the set of simplicial vertices of G, we can decide that
(i) holds or find the hyper-line strip (H,A) in time O(|E|).

We now combine Lemma 5.3 and Lemma 5.4.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Y. Faenza et al.

THEOREM 5.5. Let G(V, E) be a connected claw-free but not quasi-line graph and suppose that
we are given, for each irregular vertex a, a 5-wheel W (a) centered in a. In time O(|V ||E|) we may:

(i) either recognize that G has no simplicial vertices and α(G) ≤ 3;
(ii) or build a family H = {(Hi,Ai), }t

i=1 of vertex disjoint hyper-line strips of G such that:
— each strip in H contains a 5-wheel of G, no simplicial vertices of G and has stability number at

most 3;
— the graph G|H obtained after iteratively reducing the strips in H, i.e., G|H := Gt where for i ∈ [t]

Gi = Gi−1|(Hi,Ai) with G0 := G is quasi-line and V (G|H) 6= ∅.

PROOF. Let a be an irregular vertex. From Lemma 5.4 we may either recognize that G has no
simplicial vertex and α(G) ≤ 3, or find an hyper-line strip (H1,A1) such that a ∈ C(H1,A1) (thus
W (a) ⊆ V (H1)), no vertex of H1 is simplicial and α(H1) ≤ 3. If the former holds we are done, thus
suppose it does not.

So, let G1 be the graph G|(H1,A1). It follows from statement (ii) of Lemma 5.3 that Simp(G1) =

Simp(G) ∪ {v ∈ A, A ∈ A1}. Note that G1 is not necessarily connected. However, if it is not, by
construction, each component picks some vertex from an extremity of (H1,A1), and therefore each
component has a simplicial vertex. Let C be a component of G|(H1,A1). By (i) of Lemma 5.3, C is
claw-free; by (iii) of the same lemma, either C is quasi-line, or we have, for each irregular vertex a
of C, a 5-wheel W (a) centered in a. Suppose that C is not quasi-line, and pick an irregular vertex a.
As C contains some simplicial vertex, it follows from Lemma 5.4 that in C there exists an hyper-line
strip (H2,A2) such that a ∈ C(H2,A2), no vertex of H2 is a simplicial vertex of C and α(H2) ≤ 3.
Note in particular, that (H2,A2) and (H1,A1) are vertex disjoint: this is because the vertices of
the core of (H1,A1) do not belong to G|(H1,A1), while the vertices of the extremities of (H1,A1) are

simplicial in G|(H1,A1). Also, it follows from (v) of Lemma 5.3 that (H2,A2) is an hyper-line strip of
G.

Then we proceed iteratively until does not exist irregular vertices, i.e., we define a series
G1, . . . , Gt of graphs such that, for i ∈ [t], Gi = Gi−1|(Hi,Ai) (we let G0 := G), where, for i ∈ [t]:

— each graph Gi is claw-free and Simp(Gi) = Simp(G)
⋃

j=1..i{v ∈ A, A ∈ Aj};

— (Hi,Ai) is an hyper-line strip of Gi−1, that is vertex disjoint from (H1,A1), . . . , (Hi−1,Ai−1);
— Hi contains a 5-wheel of Gi−1, has stability number at most 3 and no simplicial vertices of Gi−1;
— Gt is quasi-line.

(We remark that the first property easily follows from (ii) of Lemma 5.3.) By repeatedly applying
Lemma 5.3, it follows that for each i ∈ [t], {(Hi,Ai)} is an hyper-line strip of G, Hi contains a 5-
wheel of G but no vertex from Simp(G). Moreover, the graph Gt is non-empty, since the removal of
each strip produces some simplicial vertex that will remain simplicial, so none of them belongs to
any hyper-line strip that is removed, and consequently they belong to Gt. In order to conclude the
proof, we must show that the family {(Hi,Ai)}t

i=1 can be found in time O(|V ||E|). Trivially, t ≤ |V |,
since the strips are vertex disjoint. Moreover, we may build the set of simplicial vertices of G in
time O(|V ||E|), since |N(v)| ≤ 2

√
|E| for each v ∈ V . Finally, it follows from the hypothesis and from

part (iii) of Lemma 5.3 that for each irregular vertex in Gi we are given a 5−wheel centered in that
vertex. Thus, Lemma 5.4 guarantees that we can build the family H in O(|V ||E|)-time.

So suppose that G is claw-free and that by Lemma 5.6 we have found a family H of vertex disjoint
hyper-line strips of G such that G|H is quasi-line. Following Algorithm 1, we decompose G|H and get
a strip decomposition (F ,P), with F = {(F 1,B1), . . . , (F k,Bk)}, such that the partition-cliques are
all articulation cliques of G|H and, for each i ∈ [k], the graph F i is distance simplicial with respect
to each B ∈ Bi. We now show how to “combine” the strips in F with the strips in H as to derive a
strip decomposition of G.

Let A be an extremity of a strip (H,A) ∈ H and, as usual, let K(A) = NG(A) \ V (H). It follows
from Theorem 5.5 that A ∪ K(A) is an articulation clique of G|H and that the vertices of A are
simplicial in G|H. Therefore, each vertex v ∈ A determines a spike of A ∪ K(A) and, trivially, a 1-
strip ({v}, {{v}}) of F . Moreover, from Theorem 4.8 we know that the partition P is such that there
is a class P (A) ∈ P corresponding to the partition-clique A ∪ K(A), that contains the extremities of
the 1-strips ({v}, {{v}}), v ∈ A.

In order to get a strip decomposition for G from the strip decomposition (F ,P) of G|H, it is there-
fore enough to do the following. For each strip (H,A) ∈ H:

— remove from F all 1-strips of the form ({v}, {{v}}), with v ∈ A and A ∈ A, and “replace” them with
the strip (H,A) ; this defines a new set of strips F ′.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:17

— for each A ∈ A, remove from the class P (A) ∈ P the extremities {{v}, v ∈ A}, and “replace” all of
them with the extremity A; this defines a partition P ′ of the extremities of all strips in F ′.

Indeed every edge of G will appear either in a partition-clique from P ′ or in a strip of F ′ and vice
versa, every edge of the strips in F ′ and edges of the partition-cliques from P ′ are edges of G.

We formalize the procedure outlined above in the following algorithm and theorem, that are the
main results of this section. Once again, we recall that, given a claw-free graph G(V, E), it follows
from Lemma 3.3 that in time O(|V ||E|) we may recognize that G is quasi-line (and, in this case,
we can rely on Theorem 4.8 to get a decomposition), or that G is non-quasi-line and α(G) ≤ 3, or
provide, for each irregular vertex a ∈ V , a 5-wheel W (a) centered in a.

ALGORITHM 3: Decomposition of a claw-free but not quasi-line graph

Require: A connected claw-free but not quasi-line graph G and, for each irregular vertex a ∈ V , a 5-wheel
W (a) centered in a.

Ensure: The algorithm either recognizes that G has stability number at most 3, or returns a strip
decomposition of G as to satisfy statement (ii) of Theorem 5.6.

1: By Theorem 5.5, either conclude that G has stability number at most 3: stop, or build a family H of vertex
disjoint hyper-line strips of G such that G|H is quasi-line, and each strip has stability number at most 3,
contains a 5-wheel of G but no simplicial vertices of G.

2: Use Algorithm 1 to find a strip decomposition (F ,P) of G|H. Let F ′ = F and P ′ = P .
3: For each A being an extremity of a strip (H,A) ∈ H do:

remove from F ′ all 1-strips made of vertices from A, i.e., F ′ = F ′ \ {({v}, {{v}}), v ∈ A};
update the class P ′ by replacing the class P (A) containing the extremities {{v}, v ∈ A} with the class

(P (A) ∪ A) \ {{v}, v ∈ A}.
4: Return the family of strips F ′ ∪H and the partition P ′.

THEOREM 5.6. Let G(V, E) be a connected claw-free but not quasi-line graphs and suppose that
we are given, for each irregular vertex a, a 5-wheel centered in a. In time O(|V ||E|) Algorithm 3:

(i) either recognizes that G has no simplicial vertices and α(G) ≤ 3;
(ii) or provides a decomposition of G into k + t ≤ |V | strips (F 1,B1), . . . , (F k,Bk), (H1,A1), . . . , (Ht,At),

with respect to a partition P , such that each partition-clique is an articulation clique of G. More-
over:
— each graph Hj is a claw-free graph with an induced 5-wheel, no simplicial vertices of G and

stability number at most 3;
— each graph F i is a quasi-line graph that is distance simplicial with respect to each B ∈ Bi.

In particular, if Bi = {B1, B2}, then:
• either B1 = B2 = V (F i);
• or B1 ∩ B2 = ∅ and there exists j2 such that B2 ⊆ Nj2−1(B1) ∪ Nj2(B1) and Nj2+1(B1) = ∅,

where Nj(B1) is the j−th neighborhood of B1 in F i (and, analogously, there exists j1 such that
B1 ⊆ Nj1−1(B2) ∪ Nj1(B2) and Nj1+1(B2) = ∅).

Proof of Theorem 5.6. Correctness of Algorithm 3 easily follows from the above discussion. Note
that the algorithm runs in O(|V ||E|)-time, as its crucial steps 1 and 2 can be performed in O(|V ||E|)-
time. Lemma 5.3 proves that each partition-clique of G, which is an articulation clique of G|H, is an
articulation clique of G. The statement then immediately follows, as soon as we use Theorem 4.8 for
characterizing the quasi-line strips of F ′ and Theorem 5.5 for characterizing the strips containing
a 5-wheel.

See Figure 2 for the application of Algorithm 3 to an example.

5.1. The maximum weighted stable set problem in claw-free gr aphs

Before giving our algorithm we need first the following simple result.

LEMMA 5.7. We can enumerate all stable sets of a claw-free graph G(V, E) with α(G) ≤ 3 in time
O(|V ||E|).

PROOF. Let S be a stable set of maximum cardinality. By maximality, S is a dominating set for
G, i.e., S ∪N(S) = V . But by Fact 3.2, it follows that that |V | ≤ α(G)+ α(G)

√
|E| ≤ 3 + 3

√
|E|, since

α(G) ≤ 3. Thus one can enumerate all stable sets of G in time O(|V |3) = O(|V ||E|).
We are now ready to put all the bricks together and present our O(|V |(|E| + |V | log |V |))-time

algorithm for the maximum weighted stable set problem in a claw-free graph G.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Y. Faenza et al.

Fig. 2. On the top left: A claw-free graph G with three hyper-line strips (bold-faced) and the corresponding articulation
cliques A ∪ K(A) for A ∈ A (dashed, in gray). On the top right: The quasi-line graph G′ obtained from G after deleting
the vertices in the core of each of those hyper-line strips (see Definition 5.2; vertices and edges from the hyper-line strips
are still bold-faced; articulation cliques A ∪ K(A) for A ∈ A are dashed, in gray). Note that G′ is the same graph of
Figure 1. On the bottom left: The decomposition of the quasi-line graph G′ into distance simplicial strips obtained using
Algorithm 1: partition-cliques are dashed, in gray, and vertices from the hyperline strips are bold-faced. On the bottom
right: The decomposition of the original claw-free graph G obtained using Algorithm 3: partition-cliques are dashed, in gray.
Extremities of each strip can be identified as in Figure 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:19

ALGORITHM 4: Solution of the MWSS in claw-free graphs

Require: A connected claw-free graph G(V, E) and a function w : V 7→ R.
Ensure: The algorithm finds a maximum weighted stable set in G with respect to w in

O(|V |(|E| + |V | log |V |))-time.

1: Use Lemma 3.3 to recognize in O(|V ||E|)-time that G is quasi-line, or to recognize that α(G) ≤ 3, or to
find, for each irregular vertex a ∈ V , a 5-wheel W (a) centered in a.

2: If in Step 1 we concluded that α(G) ≤ 3, find a MWSS by enumeration in O(|V ||E|)-time, see Lemma 5.7:
stop.

3: If G is quasi-line, use Algorithm 2 to find a MWSS in O(|V |(|E| + |V | log |V |))-time: stop.
4: By Algorithm 3, in O(|V ||E|)-time either recognize that α(G) ≤ 3 or provide a strip decomposition of G

that obeys Theorem 5.6.
5: If in Step 4 we concluded that α(G) ≤ 3, find a MWSS by enumeration in O(|V ||E|)-time, see Lemma 5.7:

stop.
6: G is then the composition of (vertex disjoint) distance simplicial strips and strips with stability number

less or equal to 3. In a distance simplicial strip (F,B) a MWSS can be found in O(|E(F)|)-time by Lemma
4.9; in a strip (H,A) such that α(H) ≤ 3 a MWSS can be found in O(|V (H)||E(H)|)-time by enumeration.
Then a MWSS of G can be found in O(|V |(|E| + |V | log |V |))-time from Theorem 2.10.

6. FINAL REMARKS AND OPEN QUESTIONS

We close the paper by summarizing some open problems stemming from our results.

To our view, the algorithms we presented show the potential of applying decomposition results (of-
ten available in structural graph theory) to the solution of combinatorial optimization problems. In
particular, it seems that strip decompositions are very useful when dealing with claw free graphs; it
is therefore an interesting question whether claw-free graphs is the only class of graphs where this
kind of decomposition is useful. Analogously, it is an interesting question whether our algorithmic
decomposition could be useful to solve problems other than the maximum weighted stable set.

We discussed in Section 1.1 that our decomposition theorem for claw-free graphs (Theorem 5.6)
provide much less information about the structure of claw-free graphs than the results by Chud-
novsky and Seymour (summarized in Theorem 1.4, see [Chudnovsky and Seymour 2008] for more
details). On the other hand, for quasi-line graphs, the characterization given by Theorem 4.8 seems
to be quite close to that provided by Theorem 1.2. While Theorem 4.8 has a direct and reasonably
simple proof, Theorem 1.2 relies on the more general structure of claw-free graphs. We ask therefore
whether (possibly, a sharpening of) Theorem 4.8 provides the same characterization from Theorem
1.2. (This would also give a direct proof of the latter characterization, thus answering a question al-
ready raised by King [2009].) In particular: which is the relation between quasi-line {claw,net}-free
and fuzzy circular interval graphs ?

Last, recall that the weighted matching problem in a graph H(W, F) can be solved in
O(|W |(|W | log |W | + |F |)−time [Gabow 1990], and we can consequently find a MWSS in a line graph
G(V, E) in time O(|V |2 log |V |), while Algorithm 4 solves the MWSS in claw-free graphs in time
O(|V |(|V | log |V | + |E|)), i.e., slightly worse than for line graphs. Can we close this gap? We be-
lieve that this should be doable, in particular for quasi-line graphs. Also note that, except for the
matching subroutine that relies on standard algorithms from the literature, Algorithm 4 only uses
elementary data structures, so one could try to lower its complexity by switching to more sophisti-
cated ones.

Appendix

A. THE PROOF OF LEMMA 4.7

This section is devoted to the proof of Lemma 4.7. Before going to the proof of the lemma itself, we
prove an intermediate structural result.

LEMMA A.1. Let G(V, E) be a connected quasi-line net-free graph and K be a non-empty clique
of G such that N(K) is a clique, but K ∪ N(K) is not a clique. Then G is distance simplicial with
respect to K.

PROOF. Suppose by contradiction that there exists j ≥ 2 such that α(Nj(K)) ≥ 2: we choose j
to be minimal, i.e., for all h < j, α(Nh(K)) = 1. Let {s1, s2} be a stable set of size 2 in Nj(K). For
i = 1, 2, define the non-empty sets Si = N(si) ∩ Nj−1(K), and note that S1 ∩ S2 = ∅. In fact, suppose
to the contrary there exists v ∈ S1 ∩ S2; then, (v; u, s1, s2) is a claw, for each u in N(v) ∩ Nj−2(K).
This implies that (S, S1, S2) is a partition of Nj−1(K), where we defined S = Nj−1(K) \ (S1 ∪ S2).

CLAIM 1. For i = 1, 2, if v ∈ Si and u ∈ Nj−1(K) \ Si, then N(v) ∩ Nj−2(K) ⊆ N(u) ∩ Nj−2(K).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Y. Faenza et al.

PROOF. Suppose there exists a vertex w in Nj−2(K) adjacent to v but not u, then (v; w, u, si) is a
claw, a contradiction. �

CLAIM 2. ∪i=1,2(Si ∪ (N(Si) ∩ Nj−2(K))) is a clique.

PROOF. As Nj−1(K) and Nj−2(K) are cliques by hypothesis, it suffices to show that for any pair
u, v ∈ S1 ∪S2, N(u)∩Nj−2(K) = N(v)∩Nj−2(K). This immediately follows from Claim 1 for u ∈ S1,
v ∈ S2. On the other hand, if u, v ∈ S1, we pick x ∈ S2 and then we have N(u) ∩ Nj−2(K) =
N(x) ∩ Nj−2(K) = N(v) ∩ Nj−2(K). �

CLAIM 3. j = 2.

PROOF. By hypothesis j ≥ 2, as N(K) is a clique. Now suppose j ≥ 3, and let v ∈ S1, u ∈ S2,
w ∈ N(v) ∩ Nj−2(K) and s3 ∈ N(w) ∩ Nj−3(K). We already argued that vs2, us1 /∈ E: moreover, by
Claim 2, w ∈ N(u) and by construction s3 is non-adjacent to u, v, s1, s2, while w is non-adjacent to
s1, s2. Thus, {v, u, w; s1, s2, s3} is a net, contradicting the hypothesis. �

We conclude the proof by showing that, if j = 2, all vertices from K are simplicial, and thereto
K ∪ N(K) is a clique, contradicting the hypothesis. Pick u, v ∈ K, and suppose there exists w ∈
N [u] \ N [v]. Recall that N(K) = S1 ∪ S2 ∪ S. Suppose first that w ∈ S1 ∪ S2. Then, by Claim 2, v is
anti-complete to S1 ∪ S2, while u is complete to S1 ∪ S2. This implies that (u, v1, v2; s1, s2, v) is a net,
for some vertices v1 ∈ S1 and v2 ∈ S2, i.e., a contradiction. Now let w ∈ S. Then, by Claim 1, v is
anti-complete to S1 ∪ S2. Recall that, by Claim 2, u is either complete or anti-complete to S1 ∪ S2.
If the former holds, then we can construct a net as done for the previous case. If conversely the
latter holds, (w, v1, v2; u, s1, s2) is a net. In both cases, we derive a contradiction. This shows that
N [u] = N [v] for arbitrary u, v ∈ K. As N(K) is a clique, we conclude that K ∪ N(K) is a clique.

We now move to the proof of Lemma 4.7.

PROOF. In the following, for an articulation clique K of G, a vertex v ∈ K, and a set Q ∈ Q(K),

we use the notation ÑK(v) := N(v) \ K and ÑK(Q) := N(Q) \ K. We omit the subscript K when it
is clear from the context. Note that with N(), Q(),. . . we denote those sets in the graph G, while we
add the subscript G|K(G) when we refer to the corresponding sets in the graph G|K(G). We start with
some basic facts on articulation cliques.

CLAIM 4. Let K ∈ K(G) be an articulation clique.

(j) If Q1 is a non-trivial spike of K and Q2 is a different spike of K such that ÑK(Q1) ⊆ ÑK(Q2),
then Q2 is a bound spike and, in particular, there exits K ′ ∈ K(G) distinct from K such that N [Q2] =

K ∪ K ′ and ÑK(Q1) ⊆ K ′.

(jj) If Q1 and Q2 are different non-trivial spikes of K, then there exist v ∈ ÑK(Q1) \ N(Q2) and

w ∈ ÑK(Q2) \ N(Q1) that are non-adjacent.

PROOF. (j) Q2 is not simplicial, since ÑK(Q2) is non-empty. Suppose now Q2 is non-trivial, and

pick q1 ∈ Q1, q2 ∈ Q2. Then ÑK(q2) and ÑK(q1) are complete to each other, since ÑK(Q2) is a

clique, ÑK(q2) ⊆ ÑK(Q2) and, by hypothesis, ÑK(q1) ⊆ ÑK(Q1) ⊆ ÑK(Q2). This implies that q1, q2

belong to the same spike of K, a contradiction. Thus, Q2 is a non-trivial spike, and consequently

N [Q2] = K ∪ K ′ for some K ′ ∈ K(G). Moreover, since ÑK(Q1) ∩ K = ∅, ÑK(Q1) ⊆ K ′.

(jj) ÑK(q1)∪ÑK(q2) is not a clique, since q1 and q2 belong to different spikes. As ÑK(q1) and ÑK(q2)

are cliques, there exist v ∈ ÑK(q1) and w ∈ ÑK(q2) that are non-adjacent. Moreover, since Ñ(Q1) is

a clique, w /∈ Ñ(Q1), that is, w /∈ N(Q1). Similarly v /∈ N(Q2). �

CLAIM 5. Let Q ∈ Q(K) be a non-trivial spike for some articulation clique K ∈ K(G), and let

K ′ ∈ K(G), K ′ 6= K, another articulation clique of G. If ÑK(Q) ∩ K ′ 6= ∅, then ÑK(Q) ∩ K ′ ⊆ Q′, for
some spike Q′ ∈ Q(K ′).

PROOF. It follows from Lemma 4.4 that Q ∩ K ′ = ∅, as Q is non-trivial spike and therefore does
not intersect any other spike of Q ∈ Q(K), and so, in particular, does not intersect K ′. Now suppose,

by contradiction, that ÑK(Q)∩Q′, ÑK(Q)∩Q′′ 6= ∅, for some distinct Q′, Q′′ ∈ Q(K ′). We first argue
that Q′, Q′′ are non-trivial spikes of K ′. They are not simplicial spikes, since they are adjacent to
Q, which we argued lie outside K ′. Suppose now that Q′′ is a bound spike; therefore there exists an
articulation clique K ′′ ∈ K(G)\K ′ such that Q′′ = K ′∩K ′′ and N [Q′′] = K ′∪K ′′. Note that K ′′ 6= K,

as otherwise Q′′ ⊆ K, while we are assuming that ÑK(Q)∩Q′′ 6= ∅. Also, since Q∩K ′ = ∅, it follows
that N(Q′′) ∩ Q ⊆ K ′′, and thus there is some vertex v ∈ Q that belongs to K ′′. Then v is bound,
as it belongs to K and K ′′, and therefore Q is a bound spike, a contradiction. Thus, both Q′ and Q′′

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:21

are non-trivial spikes. By Claim 4, there exists u ∈ ÑK′(Q′) \ N(Q′′) and v ∈ ÑK′(Q′′) \ N(Q′) such
that uv /∈ E. At least one between u and v does not belong to K, say without loss of generality u. As

Q∩ ÑK′(Q′) 6= ∅ and ÑK′(Q′) is a clique, then u is a vertex outside K that is adjacent to some vertex

of Q, i.e., u ∈ ÑK(Q). This leads to contradiction, since ÑK(Q) is a clique and u is anti-complete to
Q′′. �

CLAIM 6. For each K ∈ K(G) and each non-trivial spike Q ∈ Q(K), we have that NG|K(G)
(Q) =

ÑK(Q) is a non-empty clique in G|K(G).

PROOF. Since Q is a non-trivial spike, by construction, for each q ∈ Q, NG|K(G)
[q] = Q ∪ ÑK(q).

Therefore, NG|K(G)
(Q) = ÑK(Q), and it is non-empty, as vertices in Q are non-simplicial. We also

claim that ÑK(Q) is a clique in G. Suppose to the contrary it is not: then there exists an articulation

clique K ′ ∈ K(G), K ′ 6= K, and two distinct spikes Q′, Q′′ ∈ Q(K ′) such that Q′ ∩ ÑK(Q), Q′′ ∩
ÑK(Q) 6= ∅. But this contradicts Claim 5. �

CLAIM 7. Let K ∈ K(G), Q1, Q2 different spikes of Q(K), and v ∈ Ñ(Q1) ∩ Ñ(Q2). Then for
each covering of N [v] with two maximal cliques H1, H2, we can assume without loss of generality
that Q1 ∩ N(v) ⊆ H1 and Q2 ∩ N(v) ⊆ H2. Thus, in particular, v is adjacent to at most two spikes
from Q(K). Moreover, if both Q1 and Q2 are non-trivial spikes, then Q1 ∩ N(v) ⊆ H1 \ H2 and
Q2 ∩ N(v) ⊆ H2 \ H1.

PROOF. First suppose that both spikes Q1 and Q2 are non-trivial: by Claim 4, there exist z1 ∈
Ñ(Q1) \ N(Q2) and z2 ∈ N(Q2) \ Ñ(Q1) such that z1z2 6∈ E. Note that z1, z2 ∈ N(v). It follows
that any covering of N [v] with two maximal cliques H1, H2 is such that without loss of generality
(Q1 ∩ N(v)) ∪ {z1} ⊆ H1 \ H2 and (Q2 ∩ N(v)) ∪ {z2} ⊆ H2 \ H1.

Now suppose that at least one of Q1, Q2 is a bound spike, say without loss of generality Q1.
Therefore, Q1 = K ∩K ′, where both K and K ′ are articulation cliques. As Q1 is made of true twins,
we have that v is complete to Q1 and since v /∈ K, then v ∈ K ′. As K ′ is an articulation clique, there
exists a maximal clique H2 such that {K ′, H2} is the unique pair of maximal cliques covering N [v].
Note that each w ∈ N(v) ∩ Q2 does not belong to K ′ (else w ∈ Q1). Thus Q1 ⊆ K ′, Q2 ∩ N(v) ⊆ H2,
and the result follows. �

CLAIM 8. Let v be a vertex of G that does not belong to any articulation clique. Then any pair of
maximal cliques of G covering NG[v] is also a pair of maximal cliques of G|K(G) covering NG|K(G)

[v]

and vice versa.

PROOF. Let v be a vertex of V (G) that does not belong to any articulation clique of G. Note that
NG|K(G)

[v] = NG[v]. Let {H1, H2} be a pair of maximal cliques of G covering NG[v] (note that such a

pair exists, since G is quasi-line). As NG|K(G)
[v] = NG[v], it follows that H1 ∪ H2 covers NG|K(G)

[v].

We also claim that H1 ∪ H2 are both maximal cliques of G|K(G). First observe that H1 is a clique:
if the contrary there would be two non-trivial spikes Q1, Q2 of a same articulation clique such that
Q1 ∩ H1 6= ∅ and Q2 ∩ H1 6= ∅. Note that Q1, Q2 would be both non-trivial spikes, as v ∈ N(Q1),
v ∈ N(Q2) and v does not belong to any articulation clique of G. But then we would contradict
Claim 7. So both H1 and H2 are cliques. Then they are maximal, since E(G|K(G)) ⊆ E(G).

Now suppose vice versa that {H1, H2} is a pair of maximal cliques of G|K(G) covering NG|K(G)
[v].

Again, H1 ∪H2 covers NG[v]. Also it is trivial that H1 and H2 are cliques of G, as E(G|K(G)) ⊆ E(G).
Suppose now that H1 is not a maximal clique of G; as NG|K(G)

[v] = NG[v], it follows that there

exists z ∈ H2 \ H1 such that H1 ⊆ NG(z), while H1 6⊆ NK(G)(z). Therefore, there must exist some
articulation clique K ∈ K(G) with two spikes Q1, Q2 ∈ Q(K) such that z ∈ Q2 and Q1∩(H1\H2) 6= ∅.
Note that Q1, Q2 are both non-trivial spikes, as z ∈ N(Q1), z ∈ N(Q2) and z does not belong to any
articulation clique of G. Note also that there must exist a pair {H ′

1, H
′
2} of maximal cliques of G

covering NG[v] with z ∈ H ′
1 ∩ H ′

2. But then we are in contradiction with Claim 7. �

CLAIM 9. G|K(G) is quasi-line.

PROOF. We first show that each vertex is regular in G|K(G). This is trivial for vertices of G that
are either simplicial or bound. Now let v ∈ V (G) be a vertex that is neither simplicial nor bound.
First suppose that v belongs to some articulation clique K ∈ K(G), and let Q ∈ Q(K) be such that

v ∈ Q; then NG|K(G)
(v) ⊆ Q ∪ ÑK(Q) and so v is regular, from Claim 6. Now suppose that v does not

belong to any articulation clique of G; then v is regular, as G is quasi-line and Claim 8 holds. �

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Y. Faenza et al.

CLAIM 10. Let K be an articulation clique of G and Q ∈ Q(K) a non-trivial spike of K. If

Q ∪ ÑK(Q) is a clique in G, then there exists an articulation clique K1 ∈ K(G) \ K and a non-trivial

spike Q1 ∈ Q(K1) such that ÑK(Q) = Q1 and ÑK1(Q1) = Q.

PROOF. It follows from Claim 6 that NG|K(G)
(Q) = ÑK(Q) is a non-empty clique in G|K(G). There-

fore also Q ∪ NG|K(G)
(Q) is a clique in G|K(G): no edge between Q and NG|K(G)

(Q) is removed in the

ungluing of the cliques in K(G), since Q is a non-trivial spike and so no vertex of Q belongs to an

articulation clique K ′ 6= K. We now show that Q ∪ ÑK(Q) induces a component of G|K(G).

Suppose first that there exists a vertex w ∈ K \ Q that is complete to ÑK(Q). By Claim 4, w is a

bound vertex with N [w] = K∪K1, for some K1 ∈ K(G)\K, and ÑK(Q) ⊆ K1. Note that ÑK(Q) ⊆ Q1,

for some spike Q1 ∈ Q(K1), as we know that ÑK(Q) is a clique in G|K(G). We claim that Q1 is a non-

trivial spike. Indeed each vertex v ∈ ÑK(Q) ⊆ Q1 is complete to Q and, in particular, Q ⊆ ÑK1(Q1),

as Q is non-trivial and so Q ∩ K1 = ∅. Therefore, no vertex v ∈ ÑK(Q) is bound: if the contrary,
{v} ∪ Q would belong to an articulation clique different from K, which again contradicts Q being
non-trivial. Hence Q1 is non-trivial, and, in particular, Q1 does not intersect K.

We now argue that ÑK1(Q1) = Q. Since ÑK1(Q1) is a clique of G, all vertices from ÑK1(Q1)\Q are

complete to Q. But since ÑK(Q) ⊆ Q1, it follows that ÑK1(Q1) \ Q ⊂ K. But then ÑK1(Q1) \ Q = ∅,

i.e., ÑK1(Q1) = Q, else we would contradict Claim 5. Moreover, for each t ∈ Q1, ÑK1(t) is non-empty

and contained in Q, which implies t ∈ ÑK(Q). Thus, Q1 = ÑK(Q). Summing up, we have that

NG|K(G)
(Q) = ÑK(Q), and NG|K(G)

(ÑK(Q)) = NG|K(G)
(Q1) = ÑK1(Q1) = Q.

Thus, we can assume there exists no w ∈ K \ Q that is complete to ÑK(Q). We now prove that

this case leads to contradiction, by showing that Q∪ ÑK(Q) is an articulation clique in G, and thus

Q is not a non-trivial spike. Note first that, in this case, Q ∪ ÑK(Q) is a maximal clique in G, and it
is crucial for all vertices in Q (note that the vertices in Q are true twins, then the statement follows

from Lemma 4.3). We now show Q ∪ ÑK(Q) is also crucial for all vertices from ÑK(Q). For each

v ∈ ÑK(Q), let Tv := N(v) \ (Q ∪ ÑK(Q)). If Tv = ∅, then v is simplicial and Q ∪ ÑK(Q) is crucial
for v. So suppose that Tv 6= ∅, but, first, assume that Tv ∩ K = ∅. In this case, Tv is anti-complete to

Q, since N [Q] = K ∪ ÑK(Q). Applying Lemma 3.4, it follows that Q ∪ ÑK(Q) is crucial for v. Last,
suppose that Tv ∩K 6= ∅. Let S := (N(v) ∩K) \Q (note S 6= ∅ by hypothesis). By Claim 7, S ⊆ Q′ for
some Q′ ∈ Q(K) distinct from Q, and for each bipartition H1, H2 of N [v] into two maximal cliques,
without loss of generality Q ⊆ H1, S ⊆ H2. Now, since we are assuming that no w ∈ K\Q is complete

to ÑK(Q), it follows, in particular, that no vertex in S is complete to ÑK(Q), thus ÑK(Q) ⊂ H1. Since

Q ∪ ÑK(Q) is a maximal clique, it follows that H1 = Q ∪ ÑK(Q) and so Q ∪ ÑK(Q) is crucial for v.

Since Q ∪ ÑK(Q) is a maximal clique in G and it is crucial for all its vertices, it is an articulation
clique of G, and this concludes the proof. �

CLAIM 11. G|K(G) is net-free.

PROOF. Suppose to the contrary that G|K(G) is no net-free, and let K be a net clique. Therefore,
there exist vertices a1, a2, a3 ∈ K, v1, v2, v3 /∈ K such that aivj ∈ EK(G) if and only if i = j, and
vivj /∈ EK(G) for each i 6= j. Recall (cfr. the proof of Lemma 3.10) that (S1, S2, S3, S4) is a partition of
the vertices of K, for Si = NG|K(G)

(vi) ∩ K, and S4 = K \ (S1 ∪ S2 ∪ S3).

Since E(G|K(G)) ⊆ E, K is also a clique in G. In order to obtain a contradiction with the assump-
tion that K is a net clique in G|K(G), it suffices to show that K is an articulation clique in G, i.e.,
that it is maximal and crucial for all its vertices. The first part of the proof is devoted to show that
K is a maximal clique of G. Suppose to the contrary that there exists a vertex w that is complete
to K in G, while it is not complete to K in G|K(G). This implies that there exist spikes Q′

1 6= Q′
2

of some articulation clique K ′ ∈ K(G) such that w ∈ Q′
2, Q′

1 ∩ K 6= ∅. This also implies that w is
anti-complete to Q′

1 in G|K(G) and that K ′ ∩ K ⊆ Q′
1, otherwise K would not be a clique in G|K(G).

Since Q′
1 is a clique in G|K(G) and NG|K(G)

(Q′
1) is a clique in G|K(G) (this is immediate if Q′

1 is either

simplicial or bound, while it follows from Claim 6 if it is non-trivial), Q′
1 intersects at most one set

among S1, S2, S3. Thus, we can suppose Q′
1∩(S1∪S2) = ∅, which implies that Q′

1∩K is anti-complete
to {v1, v2} in G|K(G).

We now argue that w is complete to S1 and S2 in G|K(G). Suppose to the contrary that without loss
of generality it is not complete to S1. Then S′

1 = S1 \ NG|K(G)
(w) 6= ∅ and there exist spikes Q′′

1 6= Q′′
2

of some articulation clique K ′′ ∈ K(G) such that w ∈ Q′′
2 and S′

1 ⊆ Q′′
1 . Also, K ′′ ∩ K ⊆ Q′′

1 (in fact,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:23

K does not intersect other spikes of K ′′, otherwise K would not be a clique of G|K(G)). Note that
K ′′ 6= K ′, as K ′′ intersects K in S′

1 ⊆ S1, while K ′ ∩K ⊆ Q′
1 ⊆ S3 ∪S4. It follows that w ∈ K ′′ ∩K ′ is

a bound vertex with NG[w] = K ′′ ∪K ′. But again since Q′′
1 and NG|K(G)

(Q′′
1) are cliques in G|K(G), Q′′

1

intersects at most one set among S1, S2, S3 and thus this set is S1. Therefore, as NG[w] = K ′′ ∪ K ′,
K ′ ∩ K ⊆ Q′

1 ⊆ S3 ∪ S4 and K ′′ ∩ K ⊆ Q′′
1 ⊆ S1, it follows that w is anti-complete to S2 in G. This

is a contradiction to the fact that w is complete to K in G. Therefore, w is complete to S1 and S2 in
G|K(G) and, in particular w 6= v1, v2.

Note now that w is adjacent to v1, v2 in G|K(G) otherwise, for instance, (a1; v1, w, q) is a claw in
G|K(G) for any q ∈ Q′

1 ∩ K, while G|K(G) is quasi-line from Claim 9. Thus wv1, wv2 ∈ E(G|K(G)),
while v1v2 /∈ E(G|K(G)) by definition. Recall that w belongs to some spike Q′

2 from K ′, K ′ being an
articulation clique of K(G). Again, both Q′

2 and NG|K(G)
(Q′

2) are cliques in G|K(G). So either v1 or

v2 ∈ Q′
2, but not both: say without loss of generality v2 ∈ Q′

2. On the other hand, as K ′ ∩ K ⊆ Q′
1, it

follows that Q′
2 ∩ K = ∅ and thus a2 /∈ Q′

2. Therefore {a2, v1} is a stable set of size 2 in NG|K(G)
(Q′

2),

contradicting the fact that NG|K(G)
(Q′

2) is a clique.

Thus, K is maximal in G. In the remaining of the proof we show that K is crucial for all its
vertices in G. Suppose not: then there exists v ∈ K such that K is not crucial for v in G. However,
v belongs to some articulation clique of G: otherwise, since K is crucial for v in G|K(G), it follows
from Claim 8 that K is crucial for v also in G. So let K1 be an articulation clique of G containing v,
and let Q1 ∈ Q(K1) be such that v ∈ Q1. Trivially, as we are assuming that K is not an articulation
clique of G, we have that K1 6= K. Moreover, K1∩K ⊆ Q1, else K is not a clique in G|K(G). Note that

K \ Q1 ⊆ ÑK1(v). Suppose first that K \ Q1 = ÑK1(v). Then U [v] = K ∩ K1 and, therefore, {K, K1}
is the unique pair of maximal cliques covering NG[v]. So, K is crucial for v in G, contradicting the
assumptions.

Thus ÑK1(v) \ K 6= ∅. We now show that Q1 = K ∩ K1. By Claim 6, ÑK1(v) is a clique in G|K(G),

therefore, {ÑK1[v], Q1} is a pair of cliques of G|K(G) that cover NG|K(G)
[v]. Let {K ′, K ′′} be a pair

of maximal cliques of G|K(G) that cover NG|K(G)
[v] and are such that ÑK1 [v] ⊆ K ′ and Q1 ⊆ K ′′.

Observe that since K is crucial for v in G|K(G), one of K ′ or K ′′ is equal to K. But since we assumed

ÑK1(v) \ K 6= ∅ and K is maximal in G, it follows that K = K ′′ and thus Q1 ⊆ K. As K1 ∩ K ⊆ Q1,
it follows that Q1 = K1 ∩ K.

Let now w ∈ ÑK1(v) \ K and suppose that w is non-adjacent in G|K(G) to some vertex z ∈
N |K(G)(K). Since ÑK1(Q1) is a clique and Q1 ⊆ K, it follows that z is adjacent to some vertex

u ∈ K \ Q1. Also, w ∈ NG|K(G)
(u), since w, u ⊆ ÑK1(Q1) and the latter is a clique. But then K can-

not be crucial for u in G|K(G), since w, z ∈ NG|K(G)
(u) \ K and wz /∈ EK(G). Hence w is complete to

N |K(G)(K) in G|K(G). This implies that w 6= v1, v2, v3 and that (w; v1, v2, v3) is a claw in G|K(G), which
cannot happen by Claim 9. This gives the required contradiction and concludes the proof. �

(i) It follows from Claim 9.

(ii). Let Q ∈ Q(K) for some K ∈ K(G). By definition, Q entirely belongs to for some component C of
G|K(G). We now show that C is distance simplicial with respect to Q. If the component coincides with
Q, the statement is trivial, thus suppose that Q has non-empty neighborhood in G|K(G). This implies
that Q is non-trivial. If Q ∪ NG|K(G)

(Q) is a clique, Claim 10 and the definition of ungluing imply

that it is a clique-component of G|K(G), and again the statement holds. So suppose Q ∪ NG|K(G)
(Q)

is not a clique; as C is quasi-line, it is net-free by Claim 11, and NG|K(G)
(Q) is a clique, by Claim 6.

Then we use Lemma A.1 and conclude that the statement holds true.
The last part of the statement follows trivially by construction and Lemma 4.3.

(iii). Let C ∈ C be a component of G|K(G) and suppose that two non-trivial spikes Q1, Q2 ∈ Q(K(G))
belong to C. Note that Q1 ∩ Q2 = ∅: this is trivial if Q1 and Q2 belong to the same articulation
clique, otherwise it follows from Lemma 4.4. We know form part (ii) that C is distance simplicial
with respect to Q1and Q2. Let j2 be the maximum integer such that Nj2(Q1)∩Q2 6= ∅, where Nj(Q1)
is the j−th neighborhood of Q1 in C. As Q2 is a clique, it follows that Q2 ⊆ Nj2(Q1)∪Nj2−1(Q1). The
statement will therefore directly follow from the next claim.

CLAIM 12. Nj2+1(Q1) = ∅.

PROOF. Recall that NG|K(G)
(Q2) is a clique. Suppose first j2 = 1. Note that in this case Q2 ⊆

N1(Q1), as Q1 ∩ Q2 = ∅. Suppose, by contradiction, that N2(Q1) 6= ∅, and let w ∈ N2(Q1). Then
w is anti-complete to Q2 in G|K(G), otherwise Q2 would have neighbors from both Q1 and N2(Q1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Y. Faenza et al.

in G|K(G), contradicting the fact that NG|K(G)
(Q2) is a clique. Thus w is adjacent to some vertex

v ∈ N1(Q1) \ Q2.
We now show that Q1∪N1(Q1) is a clique. Suppose to the contrary it is not, then there exists a pair

of vertices s, t ∈ Q1 ∪ N1(Q1) that are non-adjacent in G|K(G). As Q1, N1(Q1) are cliques in G|K(G),
we can assume without loss of generality s ∈ Q1, t ∈ N1(Q1). As Q1, N1(Q1) \ Q2 ⊆ NG|K(G)

(Q2) and

the latter is a clique, Q1 is complete to N1(Q1) \ Q2. Thus, t ∈ Q2. But then (v; s, t, w) is a claw in
G|K(G), a contradiction to Claim 9. Thus, NG|K(G)

[Q1] = Q1∪N1(Q1) is a clique. It follows from Claim

10 that V (C) = NG|K(G)
[Q1]. This contradicts the fact that N2(Q1) 6= ∅.

Hence assume that j2 > 1 and suppose to the contrary that Nj2+1(Q1) 6= ∅. Q2 is anti-complete to
Nj2+1(Q1): else there would be a vertex v in NG|K(G)

(Q2)∩ (Nj2−1(Q1)∪Nj2−2(Q1)) and a vertex z in

NG|K(G)
(Q2)∩Nj2+1(Q1) that are non-adjacent. As Nj2+1(Q1) is non-empty and anti-complete to Q2,

also Nj2(Q1) \ Q2 is non-empty. Then we claim that Q2 ∩ Nj2−1(Q1) = ∅: if the contrary, then there
would two non-adjacent neighbors of Q2, respectively in Nj2−2(Q1) and in Nj2(Q1) \ Q2. But then
N2(Q2) picks two non adjacent vertices, respectively in Nj2−2(Q1) and Nj2+1(Q1), contradicting the
fact that Q2 is distance simplicial. �

(iv). Let C ∈ C be a component of G|K(G) and suppose to the contrary that Q1, . . .Ql ∈ Q(K(G))
belong to C, for some l ≥ 3. It follows from the last statement of (ii) that the spikes Q1, . . .Ql

are non-trivial (recall that no vertex belongs to more than two articulation clique, and therefore
no vertex belongs to more than two spikes); therefore they are pairwise-disjoint: this is trivial for
pairs of spikes from a same articulation clique, otherwise it follows from Lemma 4.4. We also know
form part (ii) that C is distance simplicial with respect to Q1, . . .Ql. Finally, for i = 2, 3, let ji be
the maximum integer such that Nji

(A1) ∩ Qi 6= ∅, where Nj(Q1) is the j−th neighborhood of Q1 in
G|K(G). It then follows from part (iii) that j2 = j3 and that Nj2+1(Q1) = ∅.

We claim that Q2 ⊆ Nj2(Q1). That is trivial if j2 = 1, since Q1∩Q2 = ∅. Hence assume that j2 > 1,
and suppose to the contrary that Q2 ∩ Nj2−1(Q1) 6= ∅. Since Nj2−2(Q1) ∩ NG|K(G)

(Q2) 6= ∅, it follows

that the neighborhood of Q2 contains a vertex from Nj2−2(Q1) and a vertex from Q3 ∩ Nj2(Q1),
contradicting the fact that NG|K(G)

(Q2) is a clique.

Similarly, Q3 ⊆ Nj2(Q1). Thus, Q2 ∪ Q3 is a clique, since Nj2(Q1) is a clique. As NG|K(G)
(Q2),

NG|K(G)
(Q3) are cliques, and Q2 is complete to Q3, it follows that Q2 is complete to NG|K(G)

(Q2), i.e.,

NG|K(G)
[Q2] is a clique. Therefore, it follows from Claim 10 that V (C) = NG|K(G)

[Q2], and therefore

C is a clique. We now derive a contradiction to this statement.

First observe that Q1, Q2, ..., Ql are spikes from different articulation cliques K1, K2, ..., Kl ∈
K(G), else C would not be a clique. We now show that Ql+1 := V (C) \ (∪i=1,...,lQi) is empty.
Otherwise, pick v ∈ Ql+1. By definition, v does not belong to any articulation clique of G: then
NG[v] = NG|K(G)

[v] = ∪i=1,...,l+1Qi = V (C), thus v is simplicial in G (recall that E(G|K(G)) ⊆ E(G)),

a contradiction to Lemma 3.9. Therefore, Ql+1 = ∅.

Let v ∈ Qi, for i ∈ {1, ..., l}. Observe that ÑKi
(v) = ∪j=1,...,l;j 6=iQj. Then, it follows from Lemma

4.3 that the unique covering of NG[v] into two maximal cliques is given by {Ki,∪i=1,...,lQi}. Thus,
∪i=1,...,lQi is crucial for every vertex in it, and therefore ∪i=1,...,lQi is an articulation clique of G.
Then the vertices of ∪i=1,...,lQi are bound, a contradiction.

(v). First observe that the set of strips {(C,A(C)), C ∈ C} is well-defined, since by part (iv) for
each C ∈ C, A(C) is a multi-set with one or two cliques. Let G′ be the graph obtained by com-
posing {(C,A(C)), C ∈ C(G|K(G))} with respect to the partition P that puts two extremities in the
same class if and only if they are spikes from a same articulation clique. By definition of ungluing,
∪{V (C) : C ∈ C} partitions V , thus V (G) = V (G′). By definition of composition, two vertices u, v of
G′ are adjacent if and only if uv ∈ E(C) for some C ∈ C, or u ∈ A1, v ∈ A2 and A1, A2 both belong
to some class of the partition P . By the definition of P , this implies that uv ∈ E(G′) if and only if
uv ∈ E(G). Thus G′ = G and we conclude the proof.

B. THE PROOF OF LEMMA 5.4

This section is devoted to the proof of Lemma 5.4. We will often refer to the following:

LEMMA B.1. [Lovász and Plummer 1986] Let G(V, E) be a claw-free graph with an induced
5-wheel centered in a ∈ V . Then α(a ∪ N(a) ∪ N2(a)) ≤ 3.

We now move to the proof of Lemma 5.3.

PROOF. We postpone the complexity issues to the end of the proof, and start by showing that
each graph G that fulfills the hypothesis, satisfies conditions (i) or (ii) of the statement. In order to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:25

do that, we have to gather some more information on the structure of G. In the following, we denote
the 5-wheel centered in a by W = (a; u1, u2, u3, u4, u5). Also, for i ∈ [5], we denote by Si the set of
vertices in N2(a) whose adjacent vertices in W are exactly ui, ui+1 (where we identify u6 with u1)

and such that they either have a neighbor in N3(a), or they are simplicial. We also let Ñ2(a) be the
set of vertices in N2(a) \ ⋃

i=1..5 Si.
We now investigate some properties of the graph G in the first three neighborhoods of the irreg-

ular vertex a.

CLAIM 13. Let v be a vertex of N2(a). The following statements hold:

(i) The vertices of {u1, u2, u3, u4, u5} that are adjacent to v are at least two and they have consecutive
indices.

(ii) If v has a neighbor in N3(a) or is simplicial, then v has exactly two neighbors in {u1, u2, u3, u4, u5},
and they have consecutive indices.

PROOF. We first prove that v has at least one neighbor in {u1, u2, u3, u4, u5}. By contradiction,
suppose there exists v ∈ N2(a) that is anti-complete to {u1, u2, u3, u4, u5}. Since v ∈ N2(a), there
exists u 6∈ W such that au ∈ E and uv ∈ E. Such a u must be adjacent to at least three consecutive
vertices in {u1, u2, u3, u4, u5}, otherwise there would exist a claw centered in a and picking u and
two non-adjacent vertices. Thus without loss of generality let uu1 ∈ E, uu2 ∈ E, uu3 ∈ E. But then
there is a claw: (u; u1, v, u3).

Now observe that if v is adjacent to some vertex in {u1, u2, u3, u4, u5}, say u1, then it is adjacent
to u5 or u2 too, otherwise there would exist a claw: (u1; v, u2, u5). Statement (i) easily follows.

Now suppose that v has a neighbor x ∈ N3(a). Observe that v cannot be adjacent to two
non-adjacent vertices in {u1, u2, u3, u4, u5}, say u1 and u3, otherwise there would exist a claw:
(v; x, u1, u3). It follows that v has exactly two neighbors in {u1, u2, u3, u4, u5}, and they have con-
secutive indices. Similarly if v is simplicial it cannot be adjacent to two non-adjacent vertices in
{u1, u2, u3, u4, u5} and thus it follows that v has exactly two neighbors in {u1, u2, u3, u4, u5}, and they
have consecutive indices

From Claim 13, it follows that the only vertices from N2(a) with an adjacent in N3(a) are those
from

⋃
i=1..5 Si.

CLAIM 14. If v is a simplicial vertex in a claw-free graph G, and G has an induced 5−wheel W

with center a, then v /∈ {a} ∪ N(a) ∪ Ñ2(a).

PROOF. First observe that all vertices of a 5−wheel are non-simplicial. Now let u ∈ N(a) \ W .
In order to prevent claws, u is adjacent to two non-consecutive vertices in the 5−wheel, and thus
it is not simplicial. Last, take a simplicial vertex v ∈ N2(a); since it has to be adjacent to at least
two vertices from u1, . . . , u5 by Claim 13, in order to be simplicial it must be adjacent to exactly
two consecutive vertices from u1, . . . , u5, say u1, u2. Then, by definition, v ∈ S1, which implies v /∈
Ñ2(a).

CLAIM 15. If
⋃

i=1..5 Si = ∅, we are in case (i) of the statement.

PROOF. In this case, V = {a}∪N(a)∪Ñ2(a). By Claim 14, G has no simplicial vertices; By Lemma
B.1, G has stability number at most 3.

Thus, in the following, we can suppose that
⋃

i=1,...,5 Si 6= ∅.

CLAIM 16. For i = 1, 2, . . . , 5, the set Si ∪ Si+1 is a clique.

PROOF. Suppose the contrary, that is, there exist x, y ∈ Si ∪ Si+1 that are not adjacent. Then,
there would be the claw: (ui+1; a, x, y).

CLAIM 17. For i = 1, . . . , 5, the set Si ∪ (N(Si) ∩ (N(a) ∪ Ñ2(a))) is a clique.

PROOF. without loss of generality we prove this claim for S1 (we can assume S1 6= ∅ otherwise it

is trivial). For sake of shortness, let Q = N(S1)∩ (N(a)∪ Ñ2(a)). We know from the above claim that
S1 is a clique. We now show that every vertex in S1 is complete to Q. Suppose the contrary: then

there exist x ∈ N(a) ∪ Ñ2(a), x 6= u1, u2, and y, z ∈ S1 such that xy ∈ E and xz 6∈ E. As y is non-
simplicial (z, x ∈ n(y) and zx 6∈ E), it has a neighbor in N3(a), say w. Observe that wx, wu1, wu2 6∈ E,
therefore x must be adjacent to u1 and u2: else, say xu1 6∈ E, there would be the claw (y; x, u1, w).
Moreover, in order to avoid the claws (u1; u5, x, z) and (u2; u3, x, z), it follows that u5x and u3x ∈ E.
But then (x; u3, u5, y) is a claw.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Y. Faenza et al.

Finally we show that Q is a clique. Suppose the contrary. There exists v, x ∈ Q that are not
adjacent. We have just shown that S1 is complete to Q, thus let y ∈ S1, and we have that xy and
vy ∈ E. As y is non-simplicial, there exists a vertex w of N3(a) that is adjacent to y, then there is
the claw (y; x, v, w).

CLAIM 18. Let s ∈ Si for some i ∈ {1, .., 5}. N3(a) ∩ N(s) is a clique.

PROOF. Suppose there exists x, y ∈ N3(a)∩N(s) with xy 6∈ E. Let z ∈ N(s)∩N(a), then (s; x, y, z)
is a claw.

CLAIM 19. Let s ∈ Si and t ∈ Sj for some i 6= j ∈ {1, .., 5}. If st ∈ E, then N3(a) ∩ N(s) =
N3(a) ∩ N(t).

PROOF. Suppose that there exists x ∈ N3(a) ∩ N(s) and xt 6∈ E. Since i 6= j, there exists y ∈
{u1, ..., u5} such that y ∈ N(s) \ N(t). But then (s; x, y, t) is a claw.

CLAIM 20. Let S be the union of at least two non-empty subsets Si. If S is a clique, then S ∪
(N3(a) ∩ N(S)) is a clique.

PROOF. Suppose that Si ∪ Sj ⊆ S, i 6= j. For all s ∈ Si, t ∈ Sj , i 6= j, N3(a) ∩ N(s) = N3(a) ∩ N(t)
by Claim 19. If we iterate this argument, we can conclude that each vertex s ∈ S has the same
neighbors in N3(a). Finally, by Claim 18, N3(a) ∩ N(s) is a clique and therefore S ∪ (N3(a) ∩ N(S))
is a clique.

We are now ready to prove our statements. Note that, by hypothesis and because of the properties
of sets Si shown above, we are in exactly one of the following cases.

(1) There is a single set S1, . . . , S5 that is non-empty.
(2) The set

⋃
i=1..5 Si is not a clique and the sets S1, . . . , S5 that are non-empty are two and non-

consecutive.
(3) The set

⋃
i=1..5 Si is not a clique and the sets S1, . . . , S5 that are non-empty are three and non-

consecutive.
(4) The sets

⋃
i=1..5 Si is a clique and the sets S1, . . . , S5 that are non-empty are at least two.

(5) The sets
⋃

i=1..5 Si is not a clique, and the sets Si that are non-empty are consecutive, at least
three.

We are now going to show that in cases 1 − 4, we satisfy condition (ii) of the statement, while in
case 5 we satisfy condition (i) of the statement. More precisely, we show that if case 5 holds, then
α(G) ≤ 3 and Simp(G) = ∅, and that if either of cases 1−4 hold, then there exists a strip (H,A), that
is either a 1-strip or a 2-strip with vertex disjoint extremities, such that H is an induced subgraph
of G and the following properties hold (as usual, for A ∈ A, we let K(A) = N(A) \ V (H)):

(j) C(H,A) is anti-complete to V \ V (H);
(jj) for A ∈ A, A ∪ K(A) is an articulation clique of G;

(jjj) a ∈ V (H) and α(H) ≤ 3;
(jv) Simp(G) ∩ V (H) = ∅.

Let us consider case 1. Assume without loss of generality that S1 6= ∅. In this case, we set H =

G[{a} ∪ N(a) ∪ Ñ2(a)], A1 = N(S1) ∩ (N(a) ∪ Ñ2(a)) and A = {A1}; note that A1 is non-empty and

is a clique, following Claim 17. By hypothesis, N2(a) = Ñ2(a) ∪ S1 and, following Claim 13, Ñ2(a)
is anti-complete to N3(a). Then, (j) holds by construction, (jjj) holds by construction and Lemma
B.1, (jv) holds by construction and Claim 14. We are left with showing (jj); note that K(A1) = S1.
Now observe that A1 ∪ S1 is a clique, because of Claim 17, and it is maximal by construction. If
A1 ∪ S1 contains a simplicial vertex, then it is an articulation clique by Lemma 14, thus suppose it
has none. Then each vertex of S1 has an adjacent in N3(a) and N3(a) is anti-complete to A1, thus it
follows from Lemma 3.4 that every vertex in S1 is strongly regular and A1 ∪ S1 is crucial for these
vertices. Now fix v ∈ A1; as v is not simplicial, it has a neighbor w not in A1, which is by construction
anti-complete to S1; it follows again from Lemma 3.4 that A1 ∪ S1 is crucial for v (that is strongly
regular). It follows that A1 ∪ S1 is an articulation clique, as it is crucial for all its vertices.

Let us consider case 2. Assume without loss of generality that S1, S3 6= ∅, and let Q = N(S1) ∩
N(S3) ∩ Ñ2(a). We set H = G[{a} ∪ N(a) ∪ Ñ2(a) \ Q], A1 = (N(S1) ∩ (N(a) ∪ Ñ2(a))) \ Q, A2 =

(N(S3) ∩ (N(a) ∪ Ñ2(a))) \ Q and A = {A1, A2}; note that A1 and A2 are non-empty and cliques,
following Claim 17: we know show that they are vertex disjoint. Let s1 ∈ S1, s3 ∈ S3 be a pair of
non-adjacent vertices. Observe that N(a)∩N(S1)∩N(S3) = ∅, since any vertex from this set, say v,
would be the center of the claw (v; s1, s3, a). It follows that A1 and A2 are disjoint.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:27

We now prove that statements (j) − (jv) hold. (jjj) holds by Lemma B.1, (jv) holds by Claim

14. As for (j), note that, by hypothesis, N2(a) = Ñ2(a) ∪ S1 ∪ S3 and, following Claim 13, Ñ2(a) is
anti-complete to N3(a). Therefore, by construction, if (j) does not hold, then there must be vertex
v in Q that is adjacent to some vertex w ∈ C(H,A). Following Claim 17, w is adjacent to both s1

and s3, and, by construction, s1 and s3 are anti-complete to C(H,A): thus, (v; w, s1, s3) is a claw,
a contradiction. We are left to show (jj). Note that K(A1) = S1 ∪ Q and K(A2) = S3 ∪ Q. First
observe that A1 ∪ K(A1) and A2 ∪ K(A2) are cliques, because of Claim 17, and they are maximal
by construction. We are left to show that they are articulation cliques. We show the statement for
A1 ∪ K(A1), since the same argument holds for A2 ∪ K(A2). Note that, from Lemma 14, we may
assume that no vertex of A1 ∪ K(A1) is simplicial.

The proof builds on Lemma 3.4 and Lemma 3.5, as we show that each vertex in A1 ∪ K(A1) is
strongly regular and, in fact, A1∪K(A1) is crucial for it. First we deal with a vertex q ∈ Q. Note that

N [q] = A1∪S1 ∪Q∪A2 ∪S3: in fact, N(Q)∩N3(a) = ∅, as Q ⊆ Ñ2(a), moreover, Q is anti-complete to
C(H,A), as we just observed. In particular, all vertices in Q are true twins. Now observe that S1 is
non-complete to S3 by hypothesis; moreover, we already observed that S1 is anti-complete to A2 and
S3 is anti-complete to A1. Therefore, following Lemma 3.5, with X1 = S1, X2 = A1, Y1 = S3, Y2 = A2,
v is strongly regular and A1 ∪ K(A1) = A1 ∪ S1 ∪ Q is crucial for v. Next, pick v ∈ S1; recall that
we are assuming that v is not simplicial. Then note that N(v) \ (A1 ∪ K(A1)) ⊆ (S3 ∪ N3(a)), which
implies that N(v) \ (A1 ∪ K(A1)) is anti-complete to u1; thus A1 ∪ K(A1) is crucial for v by Lemma

3.4. Now pick v ∈ (A1 ∪ K(A1)) \ (Q ∪ S1); it follows that v ∈ N(a) ∪ Ñ2(a). As v is not simplicial, it
follows that N(v) \ (A1 ∪ K(A1)) is non-empty, and it is anti-complete to S1 by construction. Then
again, A1 ∪ K(A1) is crucial for v by Lemma 3.4.

Let us consider case 3. Assume without loss of generality that S1, S2, S4 6= ∅. We set H = G[{a} ∪
N(a) ∪ Ñ2(a) ∪ S1 ∪ S2], A1 = S1 ∪ S2, A2 = N(S4) ∩ (N(a) ∪ Ñ2(a))) and A = {A1, A2}; note that A1

and A2 are cliques, following Claim 16 and Claim 17, and they are vertex disjoint. Before showing
that statements (j)− (jv) hold, we observe a few facts. First, each vertex in S4 is either complete or
anti-complete to S1∪S2. Indeed, suppose that s4 ∈ S4 has a non-adjacent in S1∪S2, say without loss
of generality s1 ∈ S1. It follows that s4 is anti-complete to S2, otherwise there exists s2 ∈ S2 ∩N(s4)
and (s2; s4, s1, u3) is a claw. Applying a similar reasoning, s4 is anti-complete to S1. Thus we can

partition S4 in the classes {S̄4,
¯̄S4}, where the vertices in S̄4 (resp., in ¯̄S4) are those complete (resp.,

anti-complete) to S1 ∪ S2. Note that S̄4 may be empty, while ¯̄S4 is not by hypothesis; moreover, they
are both cliques by Claim 16. Note that the vertices in S1 ∪ S2 are not simplicial, and therefore, by
definition, have neighbors in N3(a). Let T = S1 ∪ S2 ∪ S̄4 and Q = N(T) ∩ N3(a). Therefore, Q is a
non-empty clique, moreover Claims 18 and 19 imply that T ∪ Q is also a clique.

Statement (j) holds by construction, statement (jjj) holds by Lemma B.1, (jv) holds by Claim 14
and because no vertex in S1 ∪ S2 is simplicial. We are left to show (jj). Note that K(A1) = S̄4 ∪ Q
and K(A2) = S4. We already observed that A1 ∪ K(A1) = S1 ∪ S2 ∪ S̄4 ∪ Q = T ∪ Q is a clique. Also
A2 ∪ K(A2) is a clique, following Claim 17. Moreover, by construction, they are both maximal.

We first show that A1 ∪ K(A1) is an articulation clique. As usual, we assume that no vertex in
A1 ∪ K(A1) is simplicial (else the statement follows from Lemma 3.9) and show that each vertex in
A1∪K(A1) is strongly regular and, in fact, A1∪K(A1) is crucial for it. We start with a vertex v ∈ S1,

and note that, in this case, N(v) \ (A1 ∪ K(A1)) is contained in N(a) ∪ Ñ2(a), and thus it is anti-
complete to Q, that is non-empty. Thus, following Lemma 3.4, A1 ∪ K(A1) is crucial for v. Similarly

for v ∈ S2. Now we take a vertex v in Q; observe that N(v) \ (A1 ∪K(A1)) ⊆ N4(a)∪ (N3(a) \Q)∪ ¯̄S4,
which implies that N(v) \ (A1 ∪K(A1)), that is non-empty, as v is not simplicial, is anti-complete to
S1 ∪ S2: again, A1 ∪ K(A1) is crucial for v, following Lemma 3.4. Finally, we take a vertex v in S̄4.

Note that N [v] = Q∪S1∪S2∪ ¯̄S4∪A2, and that all vertices in S̄4 are true twins. Therefore, following

Lemma 3.5, with X1 = A1, X2 = Q, Y1 = N(S4) ∩ (N(a) ∪ Ñ2(a)), Y2 = ¯̄S4, v is strongly regular and
A1 ∪ K(A1) = A1 ∪ Q ∪ S̄4 is crucial for v.

We now show that A2 ∪K(A2) is an articulation clique: again, we use Lemma 3.4 and Lemma 3.5
for the proof. As usual, we assume that each vertex of A2 ∪ K(A2) is not simplicial, and therefore
has a neighbor outside A2 ∪ K(A2). For a vertex in S̄4, define X1, X2, Y1 and Y2 as above: it follows

from Lemma 3.5 that Y1 ∪ Y2 ∪ U [v] = S4 ∪ (N(S4) ∩ (N(a) ∪ Ñ2(a))) = A2 ∪ K(A2) is crucial for

v. Now take a vertex v in A2: each neighbor of v that is not in A2 ∪ K(A2) is anti-complete to ¯̄S4,

so A2 ∪ K(A2) is crucial for v by Lemma 3.4. Take a vertex v in ¯̄S4: each neighbor of v that is not
in A2 ∪ K(A2) belongs to N3(a), and therefore it is anti-complete to u4 ∈ A2: again, A2 ∪ K(A2) is
crucial for v by Lemma 3.4.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Y. Faenza et al.

Let us consider case 3. Assume without loss of generality that S1, S2, S4 6= ∅. We set H = G[{a} ∪
N(a) ∪ Ñ2(a) ∪ S1 ∪ S2], A1 = S1 ∪ S2, A2 = N(S4) ∩ (N(a) ∪ Ñ2(a))) and A = {A1, A2}; note that A1

and A2 are cliques, following Claim 16 and Claim 17, and they are vertex disjoint. Before showing
that statements (j) − (jv) hold, we observe a few facts.

Let us consider case 4. In this case, we set H = G[{a} ∪ N(a) ∪ N2(a)], A1 =
⋃

i=1..5 Si and
A = {A1}; note that A1 is a clique, by hypothesis. Note also that each non-empty Si is made of non-
simplicial vertices, and therefore, by definition, each vertex in some non-empty Si has a neighbor in
N3(a). By Claim 20, it also follows that N3(a) is a clique and it is complete to

⋃
i=1..5 Si. (j) holds by

construction, (jjj) by Lemma B.1, (jv) by Claim 14 and because each Si is made of non-simplicial
vertices. We are left with statement (jj). Observe that K(A1) = N3(a). We already argued that
A1 ∪K(A1) is a clique, also it is maximal by construction. As usual, assume that A1 ∪K(A1) has no
simplicial vertex. Each vertex in K(A1) has a neighbor in N4(a), which is by definition anti-complete

to A1; each vertex in A1 has a neighbor in N(a)∪ Ñ2(a) that is anti-complete to K(A1). Therefore, it
follows from Lemma 3.4 that A1 ∪ K(A1) is an articulation clique.

Let us now consider case 5. Assume without loss of generality that S1, S2, . . . , Sk, k ≥ 3, are
non-empty, with either k = 5 or Sk+1 = ∅. As we already mentioned, we are going to show that
α(G) ≤ 3 and Simp(G) = ∅. We first show that α(G) ≤ 3. By iteratively applying Claims 16 and
20, it follows that N3(a) is complete to S1 ∪ S2 ∪ . . . ∪ Sk, and that N3(a) is a clique. Now observe
that N4(a) = ∅. In fact, otherwise let z be a vertex of N3(a) that has some adjacent w ∈ N4(a). By
hypothesis, there exist x, y ∈ S1 ∪ S2 ∪ . . . ∪ Sk that are not adjacent, then there would be the claw

(z; w, x, y). Let s1, s2, s3 be vertices in respectively S1, S2, S3. We now show that Ñ2(a) = ∅. Suppose

the contrary and let z ∈ Ñ2(a). Observe that {u1, u2, u3, u4} ⊆ N(S1) ∪ N(S2) ∪ N(S3). On the other
hand, {u1, u2, u3, u4}∩N(z) is non-empty from part (i) of Claim 13. It is a routine to check that then
{u1, u2, u3, u4, s1, s2, s3} ⊆ N(z). In fact, suppose e.g. that u1z ∈ E: then s1z ∈ E in order to avoid
the claw (u1; a, s1, z) and u2z ∈ E in order to avoid the claw (s1; u2, z, w), where w ∈ N3(a) is adjacent
to s1. If we iterate this argument, we can show that indeed {u1, u2, u3, u4, s1, s2, s3} ⊆ N(z). But this

leads to a contradiction, since (z; u1, u4, s2) is a claw. Hence, Ñ2(a) = ∅ and N2(a) = S1∪S2 ∪ . . .∪Sk,
and therefore N2(a) is complete to N3(a). We know from Lemma B.1 that α(G[{a}∪N(a)∪N2(a)]) ≤ 3.
If α(G) ≥ 4, then there must exist a stable set S of size 4 picking exactly one vertex in N3(a) (since
N3(a) is a clique and we showed N4(a) = ∅). It follows that |S ∩ ({a} ∪ N(a))| = 3, which is a
contradiction, as G is claw-free.

We are left to show that no vertex in G is simplicial. Recall that in this case V = {a} ∪ N(a) ∪
(
⋃

i=1..5 Si) ∪ N3(a). No vertex of {a} ∪ N(a) is simplicial by Claim 14. No vertex of
⋃

i=1..5 Si is
simplicial, since we already argued that each vertex of

⋃
i=1..5 Si has a neighbor in N3(a). Last,

observe that no vertex in N3(a) is simplicial, since N3(a) is complete to
⋃

i=1..5 Si, that is not a
clique by hypothesis.

We now move to complexity issues; let n = |V | and m = |E|. We can compute the sets Nj(a) for
j = 1, 2, 3, 4 in time O(m). While computing those sets, without extra calculation time we can record
for each vertex v ∈ N2(a): which vertex from W it is adjacent to; if it has a neighbor in N3(a); if it
is simplicial (recall that we are given the set Simp(G)). By definition, for i = 1..5, Si is the subset
of N2(a) formed by those vertices a) whose neighbors in W are exactly ui and ui+1, and such that
b1) they have a neighbor in N3(a), or b2) they are simplicial. Given a vertex of N2(a), we can check
conditions a), b1), and b2) in constant time from what argued above. Thus in O(m)-time we can

build sets S1, . . . , S5 and Ñ2(a). If
⋃

i=1,...,5 Si = ∅, from Claim 15 we are in case (i), thus we can

suppose
⋃

i=1..5 Si 6= ∅. Now observe that each clique of G has O(
√

m) vertices, since every vertex of
a claw-free graph has at most 2

√
m neighbors (see Fact 3.2). Thus we can check in O(m)−time for

each pair {i, j} if Si ∪ Sj is a clique. Then we can distinguish between cases 1− 5 in time O(m). It is
easy to check that, in each of the cases 1 − 5, the strip (H,A) and the sets K(A) for each A ∈ A can
be constructed in time O(m).

REFERENCES

R. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood
Cliffs, NJ, 1993.

A. Brandstädt and F. F. Dragan. On linear and circular structure of (claw, net)-free graphs. Discrete Applied Mathematics
129, pages 285–303, 2003.

A. Brandstädt and C. Hoáng. On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set problem.
Theoretical Computer Science 389, pages 295–306, 2007.

M. Chudnovsky and P. Seymour. The structure of claw-free graphs. Surveys in Combinatorics 2005, London Math. Soc.
Lecture Note Series, 327, pages 153–171, 2005.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Solving the maximum weighted stable set problem in claw-free graphs via decomposition A:29

M. Chudnovsky and P. Seymour. Claw free Graphs IV. Decomposition Theorem. Journal of Combinatorial Theory. Ser B, 98,
pages 839-938, 2008.

M. Chudnovsky and P. Seymour. Claw free Graphs V. Global structure. Journal of Combinatorial Theory. Ser B, 98, pages
1373–1410, 2008.

J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Stan-
dards, 69, pages 125–130, 1965.

F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura. The Stable Set Polytope of Quasi-Line Graphs. Combinatorica, 28(1):45-
67, 2008.

J. Fouquet. A strengthening of Ben Rebea’s lemma. Journal of Combinatorial Theory 59, pages 35-40, 1993.

H.N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. Proceedings of the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms, 1990.

H. Hemper and D. Kratsch. On claw-free asteroidal triple-free graphs. Discrete Applied Mathematics 121, pages 155–180,
2002.

D. Hermelin and M. Mnich and E.J. Van Leeuwen and G.J. Woeginger. Domination when the Stars Are Out. In A. Lodi,
A. Panconesi and G. Rinaldi, editors, Proceedings of ICALP 2011, pages 462–473, 2001.

W.S. Kennedy and A.D. King. Finding a smallest odd hole in a claw-free graph using global structure. arXiv:1103.6222, 2011.

A. D. King. Claw-free graphs and two conjectures on ω, ∆, and χ. Ph.D. Thesis, McGill University, 2009.

T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently. Inf. Process. Letters, 74(3-4),
115-121, 2000.

J. Krausz. Démonstration nouvelle d’un théorème de Whitney sur les réseaux. Mat. Fix. Lapok, 50, pages 75-85, 1943.

L. Lovász, and M.D. Plummer. Matching theory. North Holland, Amsterdam, 1986.

G. J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal on Combinatorial Theory, 28, pages
284–304, 1980.

D. Nakamura and A. Tamura. A revision of Minty’s algorithm for finding a maximum weighted stable set of a claw-free
graph. Journal of the Operations Research Society of Japan, 44(2), pages 194–2004, 2001.

P. Nobili and A. Sassano. A reduction algorithm for the weighted stable set problem in claw-free graphs In Proceedings of
the 10-th Cologne-Twente Workshop, pages 223–226, 2011.

G. Oriolo, U. Pietropaoli and G. Stauffer. A new algorithm for the maximum weighted stable set problem in claw-free graphs.
In A. Lodi, A. Panconesi and G. Rinaldi, editors, Proceedings Thirteenth IPCO Conference, pages 77–96, 2008.

W. R. Pulleyblank and F. B. Shepherd. Formulations for the stable set polytope of a claw-free graph. In G. Rinaldi and
L. Wolsey, editors, Proceedings Third IPCO Conference, pages 267–279, 1993.

N. D. Roussopoulos. A max m,n algorithm for determining the graph H from its line graph G. Information Processing Letters
2 (4), pages 108–112, 1973.

N. Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Mathematics 29,
pages 53–76, 1980.

A. Schrijver. Combinatorial optimization. Polyhedra and efficiency (3 volumes). Algorithms and Combinatorics 24. Berlin:
Springer., 2003.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

